

### High Accurate Hall AC/DC Current Sensor CYHCS-LTHB

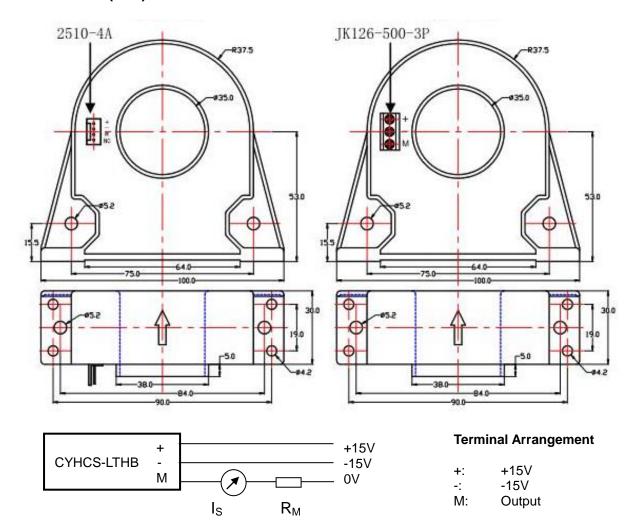
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

| Product Characteristics                                                                                                                                                       | Applications                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Excellent accuracy</li> <li>Very good linearity</li> <li>Small size and encapsulated</li> <li>Less power consumption</li> <li>Current overload capability</li> </ul> | <ul> <li>Photovoltaic equipment</li> <li>General Purpose Inverters</li> <li>AC/DC Variable Speed Drivers</li> <li>Battery Supplied Applications</li> <li>Uninterruptible Power Supplies (UPS)</li> <li>Switched Mode Power Supplies</li> </ul> |  |

#### **ELECTRICAL DATA**

|                        | T                   |                    |                    |    |
|------------------------|---------------------|--------------------|--------------------|----|
| Part number            | CYHCS-LTHB-300A     | CYHCS-LTHB-400A    | CYHCS-LTHB-500A    |    |
| Nominal current        | 300                 | 400                | 500                | Α  |
| Measuring range        | 900(±24V, 39 Ω)     | 1200 (±24V, 36Ω)   | 1500 (±24V, 24Ω)   | Α  |
| Turns ratio            | 1:3000              | 1:4000             | 1:5000             |    |
|                        | with±15V DC         |                    |                    |    |
| Measuring resistance   | @±300A max 100(max) | @±400Amax 100(max) | @±500Amax 91(max)  | Ω  |
|                        | @±600A max 36(max)  | @±800Amax 30(max)  | @±1000Amax 20(max) | Ω  |
|                        | with±18VDC          |                    |                    |    |
|                        | @±300Amax 130(max)  | @±400Amax 130(max) | @±500Amax 120(max) | Ω  |
|                        | @±600Amax 51(max)   | @±800Amax 43(max)  | @±1000Amax 33(max) | Ω  |
| Nominal output current | 100±0.2%FS          | 100±0.2%FS         | 100±0.2%FS         | mA |
| Secondary resistance   | 31                  | 40                 | 50                 | Ω  |
| Supply voltage         | ±15 ~ ±24           |                    | V                  |    |
| Current consumption    | 20 + output current |                    |                    | mA |
| Galvanic isolation     | 50Hz, 1min, 6       |                    |                    | kV |

#### **ACCURACY DYNAMIC PERFORMANCE**


| Zero offset current             | ±0.2                                                    | mA   |
|---------------------------------|---------------------------------------------------------|------|
| Thermal drift of offset current | -40°C ~ +85°C, ±0.5                                     | mA   |
| Response time                   | <1.0                                                    | μs   |
| Linearity                       | ≤0.1                                                    | %FS  |
| Bandwidth(-3dB)                 | DC100                                                   | kHz  |
| di/dt following accuracy        | >100                                                    | A/µs |
| Reference Standard              | UL94-V0, EN60947-1:2004, IEC60950-1:2001, SJ 20790-2000 |      |

## ООО Евросенсор

#### **GENERAL DATA**

| Operating temperature | -40 ~ +85          | °C |
|-----------------------|--------------------|----|
| Storage temperature   | -40 ~ <b>+</b> 125 | °C |
| Unit weight           | 290                | g  |

### **Dimensions (mm)**

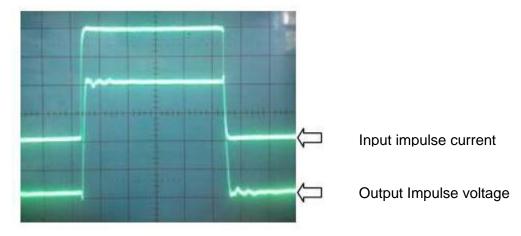




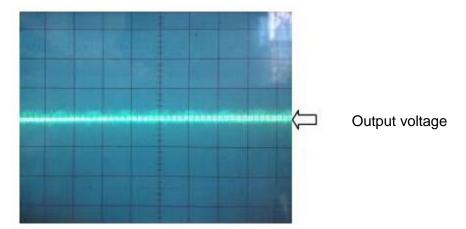
**Current direction** 

#### Remarks:

CYHCS-LTHB can be divided into two types CYHCS-LTHB1 and CYHCS-LTHB2


- 1. All dimensions are in mm.
- 2. General tolerance ±1mm.
- 3. TBC-LTHB1: with Molex connector (Molex 22011042: 5045-04AG, 5051-04)
- 4. TBC-LTHB2: with DG300-5.0 connector

## 000 Евросенсор




#### **Characteristics chart**

Response characteriscs of an im pulse current signal



#### Effect of impuse noise



### **Operating instructions**

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120  $^{\circ}$ C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

# ООО Евросенсор