

User's guide

Ax58 Ax58S AxC58/59/60 EasyCAN

- Compact & single-cable CANopen encoder
- CANopen protocol in compliance with DS301 and DS406
- Point-to-point connection
- Singleturn up to 18 bits, multiturn up to 30 bits
- Position and velocity readout

Suitable for the following models:

- AS58-CB..., AS58S-CB...
- ASC58-CB..., ASC59-CB..., ASC60-CB...
- AM58-CB..., AM58S-CB...
- AMC58-CB..., AMC59-CB..., AMC60-CB...

Table of Contents	
1 - Safety summary	19
2 - Identification	20
3 - Mounting instructions	21
4 - Electrical connections	26
5 - Quick reference	33
6 - CANopen® interface	35
7 - Setting-up	77
8 - Default parameters list	80

This publication was produced by Lika Electronic s.r.l. 2019. All rights reserved. Tutti i diritti riservati. Alle Rechte vorbehalten. Todos los derechos reservados. Tous droits réservés.

This document and information contained herein are the property of Lika Electronic s.r.l. and shall not be reproduced in whole or in part without prior written approval of Lika Electronic s.r.l. Translation, reproduction and total or partial modification (photostat copies, film and microfilm included and any other means) are forbidden without written authorisation of Lika Electronic s.r.l.

The information herein is subject to change without notice and should not be construed as a commitment by Lika Electronic s.r.l. Lika Electronic s.r.l. reserves the right to make all modifications at any moments and without forewarning.

This manual is periodically reviewed and revised. As required we suggest checking if a new or updated edition of this document is available at Lika Electronic s.r.l.'s website. Lika Electronic s.r.l. assumes no responsibility for any errors or omissions in this document. Critical evaluation of this manual by the user is welcomed. Your comments assist us in preparation of future documentation, in order to make it as clear and complete as possible. Please send an e-mail to the following address info@lika.it for submitting your comments, suggestions and criticisms.

General contents

User's guide	1
General contents	3
Subject index	6
Typographic and iconographic conventions	7
Preliminary information	
Glossary of CANopen terms	9
1 - Safety summary	
1.1 Safety	
1.2 Electrical safety	
1.3 Mechanical safety	
2 - Identification	20
3 - Mounting instructions	
3.1 Solid shaft encoders	
3.1.1 Customary installation	21
3.1.2 Installation using fixing clamps (code LKM-386)	22
3.1.3 Installation using a mounting bell (code PF4256)	
3.2 Hollow shaft encoders	
3.2.1 ASC58, AMC58	23
3.2.2 ASC59, AMC59	24
3.2.3 ASC60, AMC60	25
4 - Electrical connections	26
4.1 M12 5-pin connector and cable connection	26
4.2 NETBUS cable specifications	
4.3 M12 5-pin connector specifications	27
4.4 Ground connection	
4.5 Connection of the shield	
4.6 Setting the baud rate, node ID and RT termination	
4.6.1 Accessing the DIP switches	
4.6.2 Baud rate: DIP A	
4.6.3 Node number: DIP B	
4.6.4 RT Bus termination	
4.7 Diagnostic LEDs	
5 - Quick reference	
6 - CANopen® interface	
6.1 EDS file	
6.2 State machine	
6.2.1 Initialization state	
6.2.2 Pre-operational state	
6.2.3 Operational state	
6.2.4 Stopped state	
6.3 Communication objects	
6.3.1 Pre-defined connection set	
6.4 NMT objects	
6.5 Boot-up objects	
6.6 PDO objects	
PDO1 Cyclic mode: cyclic transmission	39

PDO2 and PDO3 SYNC mode: synchronous transmission	39
PDO4 Cyclic mode: cyclic transmission	
6.7 SDO objects	
6.7.1 Command	
6.8 Object dictionary	
6.8.1 Communication Profile Area objects (DS 301)	
1000-00 Device type	
1001-00 Error register	
1003 Predefined error field	
1005-00 COB_ID SYNC message	
1008-00 Manufacturer device name	
1009-00 Manufacturer hardware version	
100A-00 Manufacturer software version	
100C-00 Guard time	
100D-00 Life time factor	
1010-01 Store parameters	
1011-01 Restore default parameters	
1014-00 COB-ID EMCY 1015-00 Inhibit time EMCY	
1016-01 Consumer Heartbeat time	
1017-00 Producer Heartbeat time	
1018 Identity object	
1801 PDO2 parameters	
1802 PD03 parameters	
1803 PD04 parameters	
1A00-01 TPDO1 mapping parameter	
1A01-01 TPD02 mapping parameter	
1A02-01 TPD03 mapping parameter	
1A03-01 TPD04 mapping parameter	
6.8.2 Manufacturer Specific Profile Area objects	
2104-00 Limit switch min	
2105-00 Limit switch max.	
3000-00 Baud rate	
3001-00 Node-ID	
3005-00 Velocity format	
3006-00 Velocity value	
6.8.3 Standardised Device Profile Area objects (DS 406)	
6000-00 Operating parameters	58
Code sequence	58
Scaling function	58
Limit switch min	59
Limit switch max	59
Error Control protocols	59
6001-00 Measuring units per revolution	60
6002-00 Total measuring range	
6003-00 Preset value	63
6004-00 Position value	65
6200-00 Cyclic time	65

6500-00 Operating status	66
Code sequence	66
Scaling function	66
Limit switch min	67
Limit switch max	67
Error Control protocols	67
Current operating state	
6501-00 Singleturn resolution	67
6502-00 Number of distinguishable revolutions	68
6504-00 Supported alarms	
6506-00 Supported warnings	
6507-00 Profile and software version	
6508-00 Operating time	69
6509-00 Offset value	69
650A-01 Manufacturer offset value	
650B-00 Serial number	
6.9 SDO abort codes	71
6.10 Emergency objects	72
6.11 Node guarding protocol	73
6.12 Heartbeat protocol	75
7 - Setting-up	77
7.1 Setting the Operational, Pre-operational state	
7.2 Setting the resolution per revolution	
7.3 Setting the total resolution	
7.4 Setting the Operating parameters	
7.5 Setting the Preset value	
7.6 Setting the Sync counter	
7.7 Disabling the Sync mode	
7.8 Enabling the Cyclic mode	
8 - Default parameters list	
8.1 Communication Profile Area objects	
8.2 Manufacturer Specific Profile Area objects	
A 3 MADDADDZED DEVICE FIDUE ATEX ODJECTS	×I

Subject index

1	
1000-00 Device type	42
1001-00 Error register	42
1003 Predefined error field	
1005-00 COB_ID SYNC message	
1008-00 Manufacturer device name	43
1009-00 Manufacturer hardware version	43
100A-00 Manufacturer software version	43
100C-00 Guard time	
100D-00 Life time factor	43
1010-01 Store parameters	44
1011-01 Restore default parameters	
1014-00 COB-ID EMCY	
1015-00 Inhibit time EMCY	45
1016-01 Consumer Heartbeat time	45
1017-00 Producer Heartbeat time	46
1018 Identity object	47
1800 PD01 parameters	47
1801 PDO2 parameters	48
1802 PD03 parameters	50
1803 PDO4 parameters	51
1A00-01 TPD01 mapping parameter	53
1A01-01 TPD02 mapping parameter	53
1A02-01 TPD03 mapping parameter	53
1A03-01 TPD04 mapping parameter	53
2	
2104-00 Limit switch min	54
2105-00 Limit switch max	54
3	
3000-00 Baud rate	54
3001-00 Node-ID	55
3005-00 Velocity format	
3006-00 Velocity value	57
6	
6000-00 Operating parameters	58
6001-00 Measuring units per revolution	
6002-00 Total measuring range	
6003-00 Preset value	
6004-00 Position value	
6200-00 Cyclic time	
6500-00 Operating status	
6501-00 Singleturn resolution	
6502-00 Number of distinguishable revol	

6504-00 Supported alarms	68
6506-00 Supported warnings	68
6507-00 Profile and software version	69
6508-00 Operating time	69
6509-00 Offset value	69
650A-01 Manufacturer offset value	69
650B-00 Serial number	69
С	
COB-ID of PDO1	47
COB-ID of PDO2	48
COB-ID of PDO3	50
COB-ID of PDO4	51
Code sequence	58, 66
Current operating state	67
E	
Error Control protocols	59, 67
F	
Flash memory error	72
I	
Initialization	36
L	
Last error occurred	42
Limit switch max	59, 67
Limit switch min	59, 67
N	
Node guarding error	72
Number of occurred errors	
0	
Operational	36
P	
Pre-operational	36
Previous errors occurred	42
Product number	
R	
Revision number	47
S	
Scaling function	58, 66
Stopped	
т ''	
Transmission type4	8pp., 52
V	
Vendor number	47

Typographic and iconographic conventions

In this guide, to make it easier to understand and read the text the following typographic and iconographic conventions are used:

- parameters and objects both of the device and the interface are coloured in GREEN;
- alarms are coloured in RED;
- states are coloured in FUCSIA.

When scrolling through the text some icons can be found on the side of the page: they are expressly designed to highlight the parts of the text which are of great interest and significance for the user. Sometimes they are used to warn against dangers or potential sources of danger arising from the use of the device. You are advised to follow strictly the instructions given in this guide in order to guarantee the safety of the user and ensure the performance of the device. In this guide the following symbols are used:

This icon, followed by the word WARNING, is meant to highlight the parts of the text where information of great significance for the user can be found: user must pay the greatest attention to them! Instructions must be followed strictly in order to guarantee the safety of the user and a correct use of the device. Failure to heed a warning or comply with instructions could lead to personal injury and/or damage to the unit or other equipment.

This icon, followed by the word NOTE, is meant to highlight the parts of the text where important notes needful for a correct and reliable use of the device can be found. User must pay attention to them! Failure to comply with instructions could cause the equipment to be set wrongly: hence a faulty and improper working of the device could be the consequence.

This icon is meant to highlight the parts of the text where suggestions useful for making it easier to set the device and optimize performance and reliability can be found. Sometimes this symbol is followed by the word EXAMPLE when instructions for setting parameters are accompanied by examples to clarify the explanation.

Preliminary information

This guide is designed to describe the technical characteristics, installation and use of the CANopen encoders of the **Ax58x EasyCAN series**. For any further information please <u>refer to the product datasheet</u>.

Easy-CAN series encoders are the cost-effective solution thanks to the standalone application and the simple point-to-point integration. They are ideal for <u>Single Master-Single Slave networks</u> and profit from both all CAN benefits and an essential compact design at the same time. Single connection cable and simplified electronics minimize the overall foot-print and costs and ease installation especially in constrained space. They comply with DS301 and DS406 Class 2 profiles and include the whole packet of **CANopen functions**: position and velocity readout, scaling function, preset, extended diagnostics etc.

To make it easier to read the text, this guide is divided into two main sections.

In the first section general information concerning the safety, the mechanical installation and the electrical connection as well as tips for setting up and running properly and efficiently the unit are provided.

In the second section, entitled **CANopen Interface**, both general and specific information is given on the CANopen interface. In this section the interface features and the objects implemented in the unit are fully described.

Glossary of CANopen terms

CANopen, like many other networking systems, has a set of unique terminology. Table below contains a few of the technical terms used in this guide to describe the CANopen interface. They are listed in alphabetical order. The Glossary is owned and copyrighted by the CAN in Automation international users' and manufacturers' group.

Application layer	The application layer is the communication entity of the OSI (Open System Interface) reference model. It provides communication services to the application program.
Application objects	Application objects are signals and parameters of the application program visible at the application layer API (application programming interface).
Application profile	Application profiles define all communication objects and application objects in all devices that the network consists of.
Asynchronous PDO	An asynchronous PDO is transmitted whenever a defined internal event occurs. This event may also be the elapsing of the PDO's event timer. If an asynchronous PDO is received the protocol software immediately updates the mapped objects in the Object Dictionary.
Boot-up message	CANopen communication service transmitted whenever a node enters the Pre-operational state after initialization.
Bus	Topology of a communication network, where all nodes are reached by passive links, which allows transmission in both directions.
Bus analyser	Tool, which monitors the bus and displays the transmitted bits. There are bus analysers available on the physical layer, the data link layer, and different application layers (e.g. CANopen or DeviceNet).
Bus arbitration	If at the very same moment several nodes try to access the bus, an arbitration process is necessary. At the end of this process, only one node has bus access. The bus arbitration process used in CAN protocol is CMSA/CD (Carrier Sense Multiple Access/Collision Detection) with AMP (Arbitration on Message Priority). This allows bus arbitration without destruction of messages.
Bus length	The network cable length between the both termination resistors. The bus length of CANopen networks is limited by the used transmission rate. At 1 Mbps the maximum length is 25 m. When using lower transmission rates, longer bus lines may be used: at 50 kbps a length of 1 km is possible.
Bus off state	The CAN controllers switch to bus off state when the TEC (transmit error counter) has reached 255. During bus off state, the CAN controller transmits recessive bits. When a CANopen

	device recovers from bus off state, it has to transmit the boot- up message and it is recommended to send an Emergency message with the appropriate error code.
CAN	Controller Area Network (CAN) is a serial bus system originally developed by the Robert Bosch GmbH. It is internationally standardized by ISO 11898-1. CAN has been implemented by many semiconductor manufacturers.
CAN protocol controller	The CAN protocol controller is part of a CAN module performing data en-/de-capsulation, bit-timing, CRC, bit-stuffing, error handling, failure confinement, etc.
CAN transceiver	The CAN transceiver is connected to the CAN controller and to the bus lines. It provides the line transmitter and the receiver. There are high-speed, fault-tolerant, and single-wire transceivers available as well as transceivers for power-line or fiber optic transmissions.
CANopen	Family of profiles for embedded networking in industrial machinery, medical equipment, building automation (e.g. lift control systems, electronically controlled doors, integrated room control systems), railways, maritime electronics, truck-based superstructures, off-highway and off-road vehicles, etc.
CANopen application layer	The CANopen application layer and communication profile is standardized by EN 50325-4. It defines communication services and objects. In addition, it specifies the Object Dictionary and the network management (NMT).
CANopen Manager	The CANopen manager is responsible for the management of the network. The CANopen manager device shall include the NMT (network management) Master, the SDO (service data object) manager, and the Configuration manager.
CANopen Safety	Communication protocol allowing transmission of safety-relevant data. The protocol requires just one physical CAN network. Redundancy is achieved by sending each message twice with bit-wise inverted content using two identifiers differing at least in two bits.
Certification	Official compliance test of components or devices to a specific standard. CiA officially certifies CANopen devices.
CiA DR 303	Draft recommendation for CANopen cabling and connector pin assignments, coding of prefixes and SI unit as well as LED usage.
CiA DS 102	Draft standard for high-speed transmission according to ISO 11898-2 using 9-pin D-sub connectors.
CiA DS 301	The CANopen application layer and communication profile specification covers the functionality of CANopen NMT (network management) Slave devices.
CiA DS 401	The CANopen device profile for generic I/O modules covers the definition of digital and analogue input and output devices.
CiA DS 404	The CANopen device profile for measuring devices and closed-

	loop controllers supports also multi-channel devices.
CiA DS 406	The CANopen device profile for encoders defines the communication of rotating as well as linear sensors.
CiA DSP 302	The draft standard proposal for programmable CANopen devices includes CANopen manager functions, dynamic SDO connections, standardized boot-up procedure for NMT Slaves as well as program download.
CiA DSP 304	The CANopen safety protocol specification is approved by German authorities and is compliant to SIL class 3 applications.
CiA DSP 305	The Layer Setting Services (LSS) specify how to set node-ID and transmission rate via the CANopen network.
CiA DSP 306	This draft standard proposal defines format and content of Electronic Data Sheets (EDS) to be used in configuration tools.
CiA DSP 308	The CANopen framework for maritime applications defines redundancy of networks including swapping mechanism for SDOs and PDOs.
CiA DSP 309	Set of gateway specifications for CANopen to Ethernet-based networks (e.g. Modbus TCP(IP)).
CiA DSP 402	The CANopen device profile for drives and motion controllers defines the interface to frequency inverters, servo controllers as well as stepper motors.
CiA DSP 405	The CANopen device and interface profile for IEC 61131-3 compatible controllers is based on the CiA DSP 302 specification using network variables to be mapped into PDOs, and function blocks for SDO services, etc.
CiA DSP 407	The CANopen application profile for passenger information systems developed in cooperation with the German VDV specifies interfaces for a range of devices including displays, ticket printers, passenger counting units, main onboard computer, etc.
CiA DSP 408	The CANopen device profile for hydraulic controllers and proportional valves is compliant to the bus-independent VDMA device profile.
CiA DSP 410	The CANopen device profile for inclinometer supports 16-bit as well as 32-bit sensors.
CiA DSP 412	The CANopen device profiles for medical equipment specify the interfaces for x-ray collimators, x-ray generators, stands and tables.
CiA DSP 413	The CANopen interface profiles for in-vehicle truck gateways specify gateways to ISO 11992, J1939, and other in-vehicle networks. The CANopen network is mainly used for truck- or trailer-based superstructures, e.g. as in garbage trucks, truck-mounted cranes, and concrete mixers.
CiA DSP 414	The CANopen device profile for weaving machines specifies

	the interface for feeder sub-systems.
CiA DSP 415	The CANopen application profile for asphalt pavers specifies interfaces to different devices used in road construction machinery.
CiA DSP 416	The CANopen application profile for building doors specifies interfaces for locks, sensors, and other devices used in electronically controlled building doors.
CiA DSP 417	The CANopen application profile for lift control specifies the interfaces for car controller, door controller, call controller and other controllers as well as for car units, door units, input panels, and display units, etc.
CiA DSP 418	The CANopen device profile for battery modules specifies the interface to communicate with battery chargers.
CiA DSP 419	The CANopen device profile for battery charger specifies the interface to communicate with the battery module.
CiA DSP 420	The CANopen device profile family for extruder downstream devices defines interfaces for puller, corrugator and saw devices.
CiA DSP 421	The CANopen device profile for railways specifies interfaces to sub-systems such as diesel engines, brake controllers, door controllers, etc.
CiA DSP 422	The CANopen application profile for municipal vehicles defines the communication of sub-systems used in garbage trucks.
CiA TR 308	This technical report specifies some timings for CANopen performance testing tools.
Client / Server communication	In a Client/Server communication the Client initiates the communication with the Server. It is always a point-to-point communication.
Client SDO	The Client SDO initiates the SDO communication by means of reading or writing to the Object Dictionary of the Server device.
COB ID	The COB ID is the object specifying the CAN message identifier and additional parameters such as valid/invalid and remote frame support.
Communication object (COB)	A communication object is one or more CAN messages with a specific functionality, e.g. PDO, SDO, Emergency, Time, or Error Control.
Communication profile	A communication profile defines the content of communication objects such as Emergency, Time, Sync, Heartbeat, NMT, etc. in CANopen.
Configuration Manager	The Configuration Manager (CMT) provides mechanisms for configuration of CANopen devices during boot-up.
Confirmed communication	Confirmed communication services require a bi-directional communication, meaning that the receiving node sends a confirmation that the message has been received successfully.

Conformance test plan	Definitions of test cases that have to be passed successfully in order to achieve conformance to a communication standard. The conformance test plan for CAN is standardized by ISO 16845.
Conformance test tool	A conformance test tool is the implementation of a conformance test plan.
Consumer	In CAN networks a receiver of messages is called a consumer meaning the acceptance filter is opened.
D-sub connector	Standardized connectors. Most common in use is the 9-pin D-sub connector (DIN 41652); its pin-assignment for CAN networks is specified in CiA DS 102.
Data link layer	Second layer in the OSI reference model providing basic communication services. The CAN data link layer defines data, remote, error, and overload frames.
Data type	Object attribute in CANopen defining the format, e.g. UNSIGNED8, INTEGER16, BOOLEAN, etc.
Default value	Object attribute in CANopen defining the pre-setting of not user-configured objects after power-on or application reset.
Device profile	A device profile defines the device-specific communication services including the configuration services in all details.
Draft Recommendation (DR)	This kind of recommendation is not fixed, but it is published. CiA's draft recommendations are not changed within one year.
Draft Standard (DS)	This kind of standard is not fixed, but it is published. CiA's draft standards are not changed within one year.
Draft Standard Proposal (DSP)	This kind of standard is a proposal, but it is published. CiA's draft standard proposals may be changed anytime without notification.
EDS checker	Software tool that checks the conformity of electronic data sheets. The CANopen EDS checker is available on CiA's website to be downloaded.
EDS generator	Software tool that generates CANopen electronic data sheets.
Electronic Data Sheet (EDS)	Electronic data sheets describe the functionality of a device in a standardized manner.
Emergency message	Pre-defined communication service in CANopen mapped into a single 8-byte data frame containing a 2-byte standardized error code, the 1-byte error register, and 5-byte manufacturer-specific information. It is used to communicate device and application failures.
EN 50325-4	CENELEC standard defining the CANopen application layer (version 4.0).
Entry category	Object attribute in CANopen defining whether this object is mandatory or optional.
Error code	CANopen specifies standardized error codes transmitted in emergency messages.

Error control message	The CANopen error control messages are mapped to a single 1-byte CAN data frame assigned with a fixed identifier that is derived from the device's Node ID. It is transmitted as boot-up message before entering Pre-operational state after initialization, and it is transmitted if remotely requested by the NMT Master (node guarding) or periodically by the device (heart-beat).
Event driven	Event driven messages are transmitted when a defined event occurs in the node. This may be a change of input states, elapsing of a local timer, or any other local event.
Event timer	The event timer is assigned in CANopen to one PDO. It defines the frequency of transmission.
Expedited SDO	This is a confirmed communication service of CANopen (peer-to-peer). It is made up by one SDO initiate message of the Client node and the corresponding confirmation message of the Server node. Expedited SDOs are used if not more than 4 byte of data has to be transmitted.
Flying Master	In safety-critical applications, it may be required that a missing NMT Master is substituted automatically by another stand-by NMT Master. This concept of redundancy is called Flying Master.
Form error	A corruption of one of the pre-defined recessive bits (CRC delimiter, ACK delimiter and EOF) is regarded as a form error condition that will cause the transmission of an error frame in the very next bit-time.
Function code	First four bits of the CAN identifier in the CANopen predefined identifier set indicating the function of the communication object (e.g. TPDO_1 or Error Control message).
Galvanic isolation	Galvanic isolation in CAN networks is performed by optocouplers or transformers placed between CAN controller and CAN transceiver chip.
Gateway	Device with at least two network interfaces transforming all seven OSI (open system interconnection) protocol layers, e.g. CANopen-to-Ethernet gateway.
Heartbeat	CANopen uses heartbeat message to indicate that a node is still alive. This message is transmitted periodically.
Heartbeat consumer time	The heartbeat consumer time defines the time when a node is regarded as no longer alive due to a missing heartbeat message.
Heartbeat producer time	The heartbeat producer time defines the transmission frequency of a heartbeat message.
Identifier	In general, the term identifier refers to a CAN message identifier. The CAN message identifier identifies the content of a data frame. The identifier of a remote frame corresponds to the identifier of the requested data frame. The identifier includes implicitly the priority for the bus arbitration.

16-bit address to access the CANopen dictionary; for array and records the address is extended by an 8-bit Subindex.		
Object in CANopen for PDOs and Emergency messages that forbids for the specified time (inhibit time) a transmission of this communication object.		
NMT Slave state in CANopen that is reached automatically after power-on and communication or application reset.		
CANopen profile that describes just the interface and not th application behaviour of device, e.g. gateway and bridg devices.		
International standard defining the CAN data link layer including LLC, MAC and PLS sub-layers.		
International standard defining the CAN high-speed MAU.		
Method in CANopen to detect that the NMT Master does not guard the NMT Slave any more. This not recommended for new systems designs.		
Networks, where all nodes are connected directly to one bus line. CAN networks use theoretically just line topologies without any stub cable. However in practice you find tree and star topologies as well.		
Communication or application entity that is allowed to control a specific function. In networks this is for example the initialization of a communication service.		
The MPDO is made of 8 byte including one control byte, three multiplexer bytes (containing the 24-bit Index and Subindex), and four bytes of object data.		
Bus length. The network cable length between both termination resistors. The bus length of CANopen networks is limited by the used transmission rate. At 1 Mbps the maximum length is 25 m. When using lower transmission rates, longer bus lines may be used: at 50 kbps a length of 1 km is possible.		
Entity responsible for the network boot-up procedure and the optional configuration of nodes. It also may include node-supervising functions such as node guarding.		
Network variables are used in programmable CANopen devices to be mapped into PDOs after programming the device.		
Network management in CANopen.		
The NMT Master device performs the network management by means of transmitting the NMT message. With this message, it controls the state machines of all connected NMT Slave devices.		
The NMT Slaves receive the NMT message, which contains commands for the NMT state machine implemented in CANopen devices.		

NMT state machine	The NMT state machines support different states and the highest prior CAN message transmitted controls the transition to the states by the NMT Master.
Node guarding	Mechanism used in CANopen and CAL to detect bus off or disconnected devices. The NMT Master sends a remote frame to the NMT Slave that is answered by the corresponding error control message.
Node ID	Unique identifier for a device required by different CAN-based higher-layer protocols in order to assign CAN identifiers to this device, e.g. in CANopen and DeviceNet. In the pre-defined connection set of CANopen some of the CAN message identifiers are derived from the assigned Node ID.
Object Dictionary	Heart of each CANopen device containing all communication and application objects.
Operational state	In the NMT Operational state all CANopen communication services are available.
PDO mapping	In PDOs, there may be mapped up to 64 objects. The PDO mapping is described in the PDO mapping parameters.
Pin assignment	Definition of the use of connector pins.
Pre-defined connection set	The pre-defined connection set is a default assignment of CAN message identifiers to CANopen communication objects. Some CANopen communication objects are distributed in broadcast (NMT message, Sync message, Time message) and others are transmitted between NMT Master device and dedicated NMT Slave devices (PDO, SDO, Emergency, and Error Control). This default assignment guarantees that the CAN message identifiers are uniquely assigned in the network, if the node-ID has been assigned uniquely.
Pre-operational state	In the NMT Pre-operational state no CANopen PDO communication is allowed.
Process Data Object (PDO)	Communication object defined by the PDO communication parameter and PDO mapping parameter objects. It is an unconfirmed communication service without protocol overhead.
Producer	In CAN networks a transmitter of messages is called a producer.
Protocol	Formal set of conventions and rules for the exchange of information between nodes, including the specification of frame administration, frame transfer and physical layer.
Receiver	A CAN node is called receiver or consumer, if it is not transmitter and the bus is not idle.
Redundant networks	In some safety-critical applications (e.g. maritime systems), redundant networks may be required that provide swapping capability in case of detected communication failures.
Remote frame	With a remote frame another node is requested to transmit

	the corresponding data frame identified by the very same identifier. The remote frame's DLC has the value of the corresponding data frame DLC. The data field of the remote frame has a length of 0 byte.
Remote transmission request (RTR)	Bit in the arbitration field indicating if the frame is a remote frame (recessive value) or a data frame (dominant value).
Repeater	Passive component that refreshes CAN bus signals. It is used to increase the maximum number of nodes, or to achieve longer networks (>1 km), or to implement tree or meshed topologies.
Reset application	This NMT command resets all objects in CANopen devices to the default values or the permanently stored configured values.
Reset communication	This NMT command resets only the communication objects in CANopen devices to the default values or the permanently stored configured values.
RPDO	The Receive Process Data Object (RPDO) is a communication object that is received by a CANopen device.
SDO block transfer	SDO block transfer is a CANopen communication service for increasing downloading. In SDO block transfer, the confirmation is sent after the reception of a number of SDO segments.
SDO Manager	The SDO Manager handles the dynamic establishment of SDO connections. It resides on the very same node as the NMT Master.
Segmented SDO	If objects longer than 4 bytes are transmitted by means of SDO services, a segmented transfer is used. The number of segments is theoretically not limited.
Server SDO	The Server SDO receives the SDO messages from the corresponding SDO Client and responds to each SDO message or to a block of SDO messages (SDO block transfer).
Service Data Object (SDO)	SDOs provide the access to entries in the CANopen Object Dictionary. An SDO is made up of at least two CAN messages with different identifiers. SDOs are always confirmed point-to-point communication services.
SI unit	International system of units for physical values as specified in ISO 1000:1983.
Stopped state	NMT state in which only NMT messages are performed and under some conditions error control messages are transmitted.
Sub-index	8-bit sub-address to access the sub-objects of arrays and records.
Suspend transmission	CAN controllers in error passive mode have to wait additional 8 bit-times before the next data or remote frame may be transmitted.
SYNC message	Dedicated CANopen message forcing the receiving nodes to

	sample the inputs mapped into synchronous TPDOs. Receiving this message causes the node to set the outputs to values received in the previous synchronous RPDO.
Termination resistor	In CAN high-speed networks with bus topology, both ends are terminated with resistors in order to suppress reflections.
TIME message	Standardized message in CANopen containing the time as a 6-byte value given as ms after midnight and days after 1st January 1984.
TPD0	The Transmit Process Data Object (TPDO) is a communication object that is transmitted by a CANopen device.
Transmission type	CANopen object defining the scheduling of a PDO.
Value definition	Detailed description of the value range in CANopen profiles.
Value range	Object attribute in CANopen defining the allowed values that this object supports.

1 - Safety summary

1.1 Safety

- Always adhere to the professional safety and accident prevention regulations applicable to your country during device installation and operation;
- installation and maintenance operations have to be carried out by qualified personnel only, with power supply disconnected and stationary mechanical parts;
- device must be used only for the purpose appropriate to its design: use for purposes other than those for which it has been designed could result in serious personal and/or the environment damage;
- high current, voltage and moving mechanical parts can cause serious or fatal injury;
- warning! Do not use in explosive or flammable areas;
- failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the equipment;
- Lika Electronic assumes no liability for the customer's failure to comply with these requirements.

1.2 Electrical safety

- Turn off power supply before connecting the device;
- connect according to explanation in the "4 Electrical connections" section on page 26;
- in compliance with the 2014/30/EU norm on electromagnetic compatibility, following precautions must be taken:
 - before handling and installing, discharge electrical charge from your body and tools which may come in touch with the device;
 - power supply must be stabilized without noise, install EMC filters on device power supply if needed;
 - always use shielded cables (twisted pair cables whenever possible);
 - avoid cables runs longer than necessary;
 - avoid running the signal cable near high voltage power cables;
 - mount the device as far as possible from any capacitive or inductive noise source, shield the device from noise source if needed;
 - to guarantee a correct working of the device, avoid using strong magnets on or near by the unit;
 - minimize noise by connecting the shield and/or the connector housing and/or the frame to ground. Make sure that ground is not affected by noise. The connection point to ground can be situated both on the device side and on user's side. The best solution to minimize the interference must be carried out by the user.

1.3 Mechanical safety

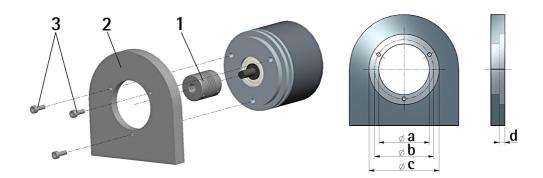
- Install the device following strictly the information in the "3 Mounting instructions" section on page 21;
- mechanical installation has to be carried out with stationary mechanical parts;
- do not disassemble the encoder;
- do not tool the encoder or its shaft:
- delicate electronic equipment: handle with care; do not subject the device and the shaft to knocks or shocks;
- respect the environmental characteristics declared by manufacturer;
- unit with solid shaft: in order to guarantee maximum reliability over time of mechanical parts, we recommend a flexible coupling to be installed to connect the encoder and user's shaft; make sure the misalignment tolerances of the flexible coupling are respected;
- unit with hollow shaft: the encoder can be mounted directly on a shaft whose diameter has to respect the technical characteristics specified in the purchase order and clamped by means of the collar and, when requested, the anti-rotation pin.

2 - Identification

Device can be identified through the **order code** and the **serial number** printed on the label applied to its enclosure. Information is listed in the delivery document too. Please always quote the order code and the serial number when reaching Lika Electronic for purchasing spare parts or needing assistance. For any information on the technical characteristics of the product <u>refer to the technical catalogue</u>.

Warning: encoders having order code ending with "/Sxxx" may have mechanical and electrical characteristics different from standard and be supplied with additional documentation for special connections (Technical info).

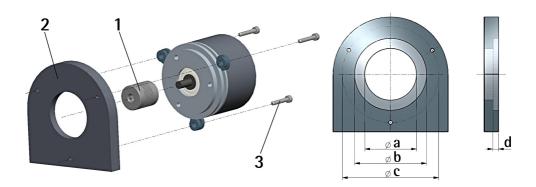
3 - Mounting instructions


WARNING

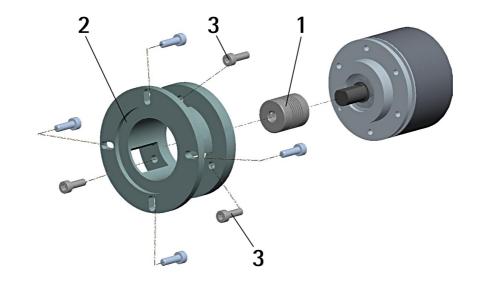
Installation and maintenance operations have to be carried out by qualified personnel only, with power supply disconnected and mechanical parts absolutely in stop.

3.1 Solid shaft encoders

- Mount the flexible coupling 1 on the encoder shaft;
- fix the encoder to the flange 2 (or to the mounting bell) by means of screws
 3;
- secure the flange 2 to the support (or the mounting bell to the motor);
- mount the flexible coupling 1 on the motor shaft;
- make sure the misalignment tolerances of the flexible coupling 1 are respected.


3.1.1 Customary installation

	a [mm]	b [mm]	c [mm]	d [mm]
AS58, AM58	-	42	50 F7	4
AS58S, AM58S	36 H7	48	-	-

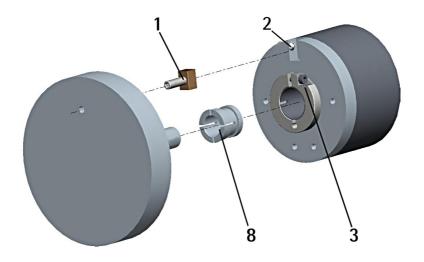


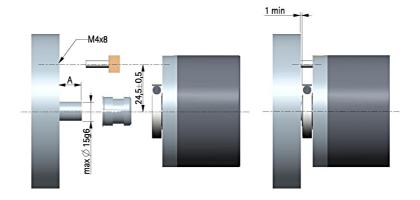
3.1.2 Installation using fixing clamps (code LKM-386)

	a [mm]	b [mm]	c [mm]	d [mm]
AS58, AM58	-	50 F7	67	4
AS58S, AM58S	36 H7	-	67	_

3.1.3 Installation using a mounting bell (code PF4256)

NOTE

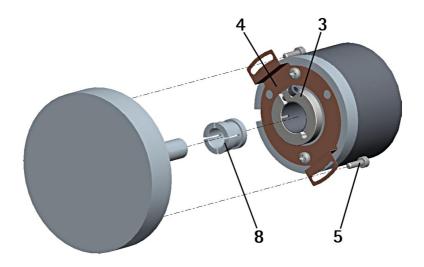

In order to guarantee reliability over time of the encoder mechanical parts, we recommend a flexible coupling to be installed between the encoder and the motor shaft. Make sure the misalignment tolerances of the flexible coupling are respected.

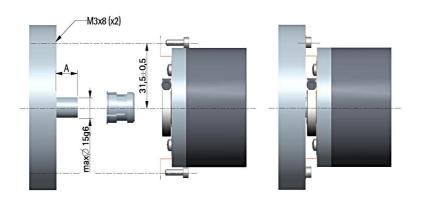


3.2 Hollow shaft encoders

3.2.1 ASC58, AMC58

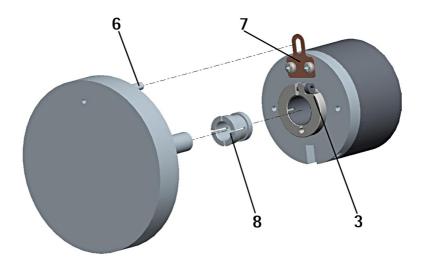
- Fasten the anti-rotation pin 1 to the rear of the motor (secure it using a locknut);
- mount the encoder on the motor shaft using the reducing sleeve **8** (if supplied). Avoid forcing the encoder shaft;
- insert the anti-rotation pin 1 into the slot on the flange of the encoder; this secures it in place by grub screw 2, preset at Lika;
- fix the collar **3** to the encoder shaft (apply threadlocker to screw **3**).

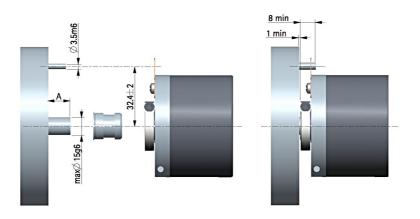



A = min. 8, max. 18 mm

3.2.2 ASC59, AMC59

- Mount the encoder on the motor shaft using the reducing sleeve **8** (if supplied). Avoid forcing the encoder shaft;
- fasten the fixing plate **4** to the rear of the motor using two M3 cylindrical head screws **5**;
- fix the collar **3** to the encoder shaft (apply threadlocker to screw **3**).




A = min. 8, max. 18 mm

3.2.3 ASC60, AMC60

- Fix the tempered pin 6 to the rear of the motor;
- mount the encoder on the motor shaft using the reducing sleeve **8** (if supplied). Avoid forcing the encoder shaft;
- make sure the anti-rotation pin 6 is inserted properly into the fixing plate 7;
- fix the collar **3** to the encoder shaft (apply threadlocker to screw **3**).

A = min. 8, max. 18 mm

NOTE

You are strongly advised not to carry out any mechanical operations (drilling, milling, etc.) on the encoder shaft. This could cause serious damages to the internal parts and an immediate warranty loss. Please contact our technical personnel for the complete availability of "custom made" shafts.

4 - Electrical connections

WARNING

Power supply must be turned off before performing any electrical connection!

4.1 M12 5-pin connector and cable connection

Function	NETBUS cable	M12 5-pin
CAN Shield	Shield	Case
CAN SIIICIU	SHICIU	1 1
+10Vdc +30Vdc	Red	2
supply voltage	ncu	Z
0Vdc	Black	2
supply voltage	DIACK	3
CAN High	White	4
CAN Low	Blue	5

¹ CAN Shield is also connected to pin 1 to allow the connection of the shield even if the plug connector has a plastic case.

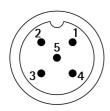
4.2 NETBUS cable specifications

Model : NETBUS cable for dynamic (drag chain) application

Cross section : $2 \times 2 \times 0.24 \text{ mm}^2 + 1 \times 0.22 \text{ mm}^2$ (19AWG) Jacket : PUR flame retardant and halogen free Shield : Tinned copper wire braid, coverage > 65%

Outer diameter : $6.9 \pm 0.2 \text{ mm} (0.271'' \pm 0.008'')$

Min. bend radius : outer \emptyset x 6 (fixed); outer \emptyset x 12 (dynamic)

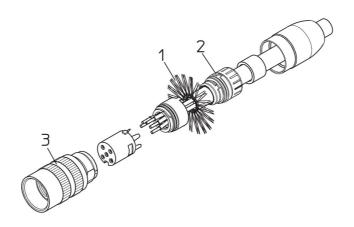

Work temperature: dyn -30 +70°C (-22° +158°F) / fix -40 +80°C (-40° +176°F)

Conductor resistance : $<78 \Omega/\text{Km} (0.24 \text{ mm}^2), <54 \Omega/\text{Km} (0.22 \text{ mm}^2)$

The total length of the cable that connects the encoder and the receiving device should not exceed the values stated in the "CANopen" section of the rotary encoders' catalogue; they depend on the set baud rate. If you need to reach greater distances please contact Lika Electronic Technical Dept.

4.3 M12 5-pin connector specifications

Male Frontal side A coding


M12 5-pin connector pin-out complies with CANopen® standard. Therefore you can use standard CAN cordsets and patchcords commercially available. For a complete list of the available cordsets and patchcords please refer to the product datasheet ("Accessories" list).

4.4 Ground connection

Minimize noise by connecting the shield and/or the connector housing to ground. Make sure that ground is not affected by noise. The connection point to ground can be situated both on the device side and on user's side. The best solution to minimize the interference must be carried out by the user. You are advised to provide the ground connection as close as possible to the encoder.

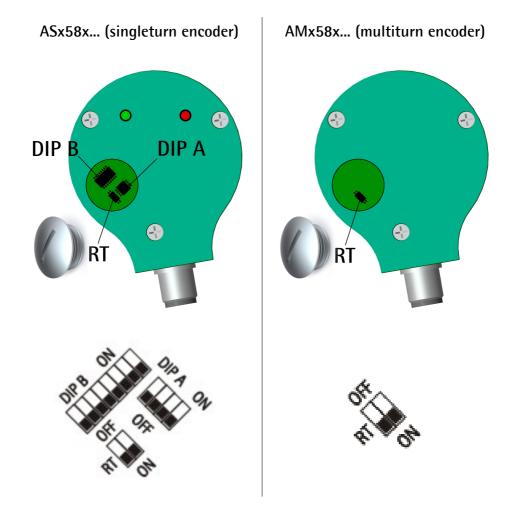
4.5 Connection of the shield

Disentangle and shorten the shielding 1 and then bend it over the part 2; finally place the ring nut 3 of the connector. Be sure that the shielding 1 is in tight contact with the ring nut 3.

4.6 Setting the baud rate, node ID and RT termination

4.6.1 Accessing the DIP switches

WARNING


Power supply must be turned off before performing this operation!

To access the DIP switches loosen and remove the screw plug in the rear side of the encoder. The DIP switches are designed to set the baud rate and the node address as well as to activate the RT bus termination in the singleturn model; while they are designed to activate only the RT bus termination in the multiturn model. To access the DIP switches loosen the screw plug using a screwdriver. Be careful to replace the screw plug at the end of the operation.

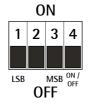
NOTE

When performing this operation be careful not to damage the inside electronics.

4.6.2 Baud rate: DIP A

WARNING

Power supply must be turned off before performing this operation!


NOTE

The DIP A DIP switch is available for ASx58... singleturn encoder only. In the ASx58... singleturn encoders the transmission rate can be set both via hardware by using the DIP A dip switch or via software (see the 3000–00 Baud rate object).

In the AMx58... multiturn encoders the transmission rate can be set only via software (see the 3000–00 Baud rate object).

If the **DIP A** bit 4 = "OFF", the bit rate is set in the **3000–00 Baud rate** object of the "Object Dictionary" and can be modified using SDO messages. If the **DIP A** bit 4 = "ON", the bit rate is set via DIP A.

DIP A:

Set the binary value of the transmission rate considering that: ON=1, OFF=0.

bit	1 LSB	2	3 MSB	4
	20	2 ¹	2 ²	ON/OFF

Available baud rate values are:

Decimal value	Binary value	Baud rate
0	000	20 Kbit/s
1	001	50 Kbit/s
2	010	100 Kbit/s
3	011	125 Kbit/s
4	100	250 Kbit/s
5	101	500 Kbit/s (default)
6	110	800 Kbit/s
7	111	1000 Kbit/s

EXAMPLE

Set the baud rate to 250Kbit/s:

 $\mathbf{4}_{10} = \mathbf{100}_2$ (binary value, see table above)

bit	1	2	3	4
	2 ⁰	2 ¹	2 ²	2 ³
	OFF	OFF	ON	ON

Set the baud rate to 500Kbit/s:

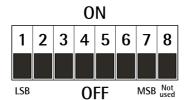
 $\mathbf{5}_{10} = \mathbf{101}_2$ (binary value, see table above)

bit	1	2	3	4
	2 ⁰	2 ¹	2 ²	2 ³
	ON	OFF	ON	ON

4.6.3 Node number: DIP B

WARNING

Power supply must be turned off before performing this operation!


NOTE

The DIP B DIP switch is available for ASx58... singleturn encoder only. In the ASx58... singleturn encoders the node number can be set both via hardware by using the DIP B dip switch or via software (see the 3001–00 Node–ID object). In the AMx58... multiturn encoders the node number can be set only via software (see the 3001–00 Node–ID object).

Allowed node addresses are between 1 and 127. The default value is 1.

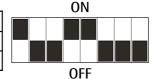
If all bits of **DIP B** are "OFF" the node number is set in the **3001–00 Node–ID** object of the "Object Dictionary" and can be modified using SDO messages. If one bit at least of **DIP B** is set to "ON" the node number is set via DIP B.

DIP B:

30

Set the node number in binary value considering that: ON=1, OFF=0

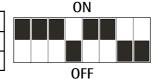
bit	1	2	3	4	5	6	7	8
	LSB						MSB	not
	2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	used



FXAMPIF

Set the node number = 25:

 $25_{10} = 0001 \ 1001_2$ (binary value)


bit	1	2	3	4	5	6	7	8
	2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	
	ON	OFF	OFF	ON	ON	OFF	OFF	OFF

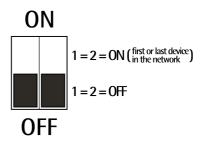
Set the node number = 55:

 $55_{10} = 0011 \ 0111_2$ (binary value)

bit	1	2	3	4	5	6	7	8
	2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	
	ON	ON	ON	OFF	ON	ON	OFF	OFF

WARNING

If the baud rate and the node number are set via software, the Master device has to detect the baud rate of the Slave (scanning of baud rate) when the encoder is being installed. Once the communication has been activated the new baud rate and node number values can be set (3000–00 Baud rate and 3001–00 Node–ID objects). After having set new values, transmit a Reset node command and then save the parameters (1010–01 Store parameters object). To avoid conflict between the Slaves, this operation must be carried out when only one device is connected to the network.


4.6.4 RT Bus termination

WARNING

Power supply must be turned off before performing this operation!

Both the singleturn and the multiturn encoders are equipped with a bus termination resistance. A bus termination resistance is provided inside the connection cap and must be activated as line termination if the encoder is at the ends of the transmission line (i.e. it is either the first or the last device in the transmission line).

31

Use RT Switch to activate or deactivate the bus termination.

RT	Description					
1 = 2 = 0N	Activated: if the encoder is the first or the last					
	device in the transmission line					
1 = 2 = 0FF	Deactivated: if the encoder is not the first or the					
1 = 2 = 0FF	last device in the transmission line					

4.7 Diagnostic LEDs

NOTE

Diagnostic LEDs are available for ASx58... singleturn encoders only.

Two LEDs located in the rear side of the connection cap are designed to show visually the operating or fault status of the CANopen® interface.

GREEN LED	Description
ON	The encoder is in Operational state
Single flash	The encoder is in Stopped state
Blinking	The encoder is in Pre-Operational state

RED LED	Description
ON	The CAN controller is switched off
Double flash	Node Guarding or Heartbeat error
Single flash	Max. number of warning errors
Blinking	Generic error or Flash memory error
OFF	No error

During initialization, device carries out a hardware test to check LEDs operation. Both LEDs light up.

5 - Quick reference

Using the default settings provided by the manufacturer, you can switch on the device and read immediately its position.

Follow the instructions below to:

- read the device resolution: singleturn resolution (6501-00 Singleturn resolution) and number of revolutions (6502-00 Number of distinguishable revolutions);
- set a custom cyclic time 6200-00 Cyclic time ≠ 0;
- set the Operational mode;
- read the current position (cyclic mode and/or sync mode).

Default Baud rate and Node-ID are:

Baud rate = 500 Kbit/s Node-ID = 1

Read the resolution per revolution 6501-00 Singleturn resolution

Master → Encoder

COB-ID	Cmd	Index		Sub		Process dat		
601	40	01	65	00	-	-	-	-
Tunanday \	Francis Master							

Encoder → Master

COB-ID		Cmd	Inc	lex	Sub		Proces	s data	I
581		43	01	65	01	A0	A1	A2	A3
-4	$((\Lambda_{2} + 2\Lambda) (\Lambda_{2} + 4\Omega) (\Lambda_{1} + 4\Omega) \Lambda_{1})$								

steps/rev. = ((A3 << 24) | (A2 << 16) | (A1 << 8) | A0)

Read the number of revolutions 6502-00 Number of distinguishable revolutions

Master → Encoder

IVIOSICI /	LI	icouci							
COB-ID		Cmd	Index		Sub	Process data			
601		40	02	65	00	-	-	-	-
Encoder ->	Encoder → Master								
COB-ID		Cmd	Inc	Index Sub Process data					
581		43	02	65	01	ВО	B1	B2	В3

N. rev. = (B3 << 24) | (B2 << 16) | (B1 << 8) | B0)

Set the cyclic time 6200-00 Cyclic time (100 ms = 64h)

Master → Encoder

IVIUSCCI >	LITCOUCI							
COB-ID	Cmd	Ind	lex	Sub		Proces	s data	
600+ID	2B	00	62	00	64	00	_	-
Encoder -	Encoder → Master							
COB-ID	Cmd	Inc	Index Sub Process data					
580+ID	60	00	62	00	00	00	-	-

33

Set the Operational mode

Master → Encoder

COB-ID	Cmd	Node	
000	01	01	

Read the position every 100 ms

Encoder → Master

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3
181	Low			High

NOTE

For further examples please refer to the "7 - Setting-up" section on page 77.

6 - CANopen® interface

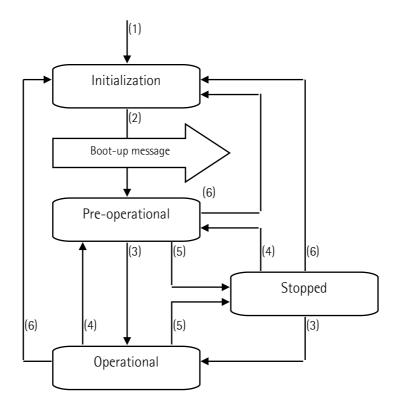
Lika encoders are always Slave devices and comply with the "Device profile for encoders", Class 2.

For any omitted information, refer to the "CiA Draft Standard 301" and "CiA Draft Standard 406" documents available at the address www.can-cia.org.

6.1 EDS file

CANopen® encoders are equipped with their own EDS file Lika_AxxCB_DS406_Vx.eds. When you need to download the file please refer to the address www.lika.biz > ROTARY ENCODERS > ABSOLUTE ENCODERS > CAN).

EDS file must be installed in the CANopen® Master device.


Vx is intended to indicate the file version.

Specific EDS files are provided for singleturn and multiturn encoder versions:

- Lika_ASxCB_DS406_Vx.eds: for singleturn encoders;
- Lika_AMxCB_DS406_Vx.eds: for multiturn encoders.

6.2 State machine

CANopen® devices are designed to operate using different states. The transition from one state to another is made by sending specific NMT messages (see the Figure below).

(1)	Power on
(2)	Initialization carried out, boot-up message is sent automatically
(3)	NMT message: Start remote node
(4)	NMT message: Enter pre-operational
(5)	NMT message: Stop remote node
(6)	NMT message: Reset node or Reset communication

6.2.1 Initialization state

This is the first state the CANopen® device enters after the power is turned on or after a hardware reset. As soon as the basic CANopen® device initialization is carried out, the device reads and loads the parameters saved on EPROM, sends a boot-up message and then switches automatically to **Pre-operational** state. When the Heartbeat protocol is enabled, if a device starts with a value for the **1017-00 Producer Heartbeat time** that is not 0, the Heartbeat protocol starts on the state transition from **INITIALISIATION** to **PRE-OPERATIONAL**. In this case the boot-up message is regarded as first heartbeat message.

6.2.2 Pre-operational state

In this state the communication between the Master and the Slave is possible using SDO messages. They allow working parameters to be set. The Slave cannot send PDO messages. The state is signalled through the green LED (see on page 32).

To switch the Slave device to the **Operational** state the Master must send a **Start remote node** command using an NMT message (see on page 77).

6.2.3 Operational state

In this state the Slave device is active and all communication objects are available. The Slave device can use the parameters available in the "Object dictionary" (see on page 41) and is allowed to send process data using PDO messages. The "Object dictionary" can be accessed by using SDO messages. The state is signalled through the green LED (see on page 32). To switch the Slave device to the **Pre-operational** state the Master must send an **Enter pre-operational** command using an NMT message (see on page 77).

6.2.4 Stopped state

In this state the Slave device is forced to interrupt the communication with the Master (except the Node Guarding or the Heartbeat, if active). The communication using PDO and SDO messages is not allowed. The state is signalled through the green LED (see on page 32).

To switch the Slave device to either the **Pre-operational** or **Operational** state the Master must send the specific commands **Enter pre-operational** or **Start remote node** using an NMT message (see on page 77).

6.3 Communication objects

Four different kinds of communication messages are used in a CANopen® network:

- <u>Network management NMT protocol</u>: NMT protocols are used to issue the state machine change commands (i.e. to start and stop the devices), detect the remote device boot-ups and the error conditions.
- <u>Process Data Objects PDO protocol</u>: used to process real time data (transmission of process data in real time).
- <u>Service Data Objects SDO protocol</u>: used to set and read values from the Object dictionary of a remote device.
- Special Function Objects:
 - <u>SYNC</u>: synchronization message used by the Master to enable the Slaves devices to transmit process data (encoder position and velocity).
 - <u>Emergency</u>: the error messages are triggered by each error event.
 - <u>Node Guarding</u>: used to request the state of the Slave: the NMT Master polls each NMT Slave at regular time intervals.
 - <u>Heartbeat</u>: used to check the state of the Slave: a Heartbeat Producer transmits a Heartbeat message cyclically to the Heartbeat Consumer.

Relation between the device states and the communication objects:

	Initial.	Pre-oper.	Operat.	Stopped
NMT		X	Χ	X
PD0			Χ	
SD0		X	Χ	
SYNC			Χ	
EMCY		X	Χ	
Boot-up	Χ			
Node Guarding		Χ	Χ	Χ
Heartbeat		X	Χ	X

6.3.1 Pre-defined connection set

Master → Slave broadcast				
Type of COB (Object)	COB-ID (hex)			
NMT	0000	000		
SYNC	0001	080		

37

peer-to-peer transmission				
EMERGENCY	0001	081 - 0FF		
PDO 1 (tx)	0011	181 - 1FF		
PDO 2 (tx)	0101	281 - 2FF		
PDO 3 (tx)	0111	381 - 3FF		
PD04 (tx)	1001	481 - 4FF		
SDO (tx)	1011	581 - 5FF		
SDO (rx)	1100	601 - 67F		
Node guarding	1110	701 - 77F		
Heartbeat	1110	701 - 77F		
Boot-up	1110	701 - 77F		

The type of COB (tx or rx) is viewed from the Slave device.

6.4 NMT objects

NMT structure:

COB-ID (11 bit)		2 CAN D	ata Bytes	
Func.code	Node ID		Command	Slave
0000	0		NMT Func.	Slave

If the Slave ID = 00h, the NMT message is issued to all network nodes.

NMT Function:

Command	NMT Function	State node
01 hex	Start remote node	Operational
02 hex	Stop remote node	Stopped
80 hex	Enter pre-operational	Pre-operational
81 hex	Reset node	Pre-operational
82 hex	Reset communication	Pre-operational

6.5 Boot-up objects

Boot-up message structure:

COB-ID(hex)	1 CAN Data Bytes
700+Node ID	00

Slave ID Slave ID

6.6 PDO objects

PDO (tx) messages are always made up of 4 CAN Data Bytes and are used by the encoder to transmit the position value and/or the velocity value.

PDO structure:

IDENTIFIER			
COB-ID(hex)			
F.C. Node-ID			
•			

4 CAN Data Bytes					
Byte 0	Byte 1	Byte 2	Byte 3		
Low			High		
position value (with PDO1, PDO2, PDO3)					
V	elocity valu	ie (with PD	04)		

Four types of PDO messages are defined, they are:

PDO1 Cyclic mode: cyclic transmission

The encoder uses the PDO1 message to transmit the <u>position value</u> **cyclically**, i.e. periodically and independently from the Master.

The interval between two issues is set in the 6200-00 Cyclic time object.

To activate (or deactivate) the cyclic mode it is necessary to set to 0 (or 1) the most significant bit of COB-ID used by PDO1 (1800 PDO1 parameters, sub 1 object).

PDO2 and PDO3 SYNC mode: synchronous transmission.

The transmission of the <u>position value</u> is managed by the Master **by sending a SYNC message**.

SYNC message is a high-priority COB transmitted by the Master to request the position value of the encoder.

If several nodes (encoders) are connected to the network, the Master receives the position values from the Slaves according to the order of the Node numbers.

The encoder can be programmed to send a reply after a set number of SYNC messages by setting a counter.

The PDO message will be transmitted after having received the set number of SYNC messages.

For PDO2 the value of the counter must be set in the **1801 PDO2 parameters**, sub 2 object.

For PD03 refer to the 1802 PD03 parameters, sub 2 object.

The SYNC transmission mode can be enabled (or disabled) by setting to 0 (or 1) the most significant bit (MSB) of COB-IB used by PDO (1801 PDO2 parameters / 1802 PDO3 parameters, sub1 objects).

PDO4 Cyclic mode: cyclic transmission

The encoder uses the PDO4 message to transmit the <u>velocity value</u> **cyclically**, i.e. periodically and independently from the Master.

The interval between two issues is set in the 6200–00 Cyclic time object.

To activate (or deactivate) the cyclic mode it is necessary to set to 0 (or 1) the most significant bit of COB-ID used by PDO4 (1803 PDO4 parameters, sub 1 object).

NOTE

Several transmission modes can be active at the same time.

6.7 SDO objects

SDO messages are used to set and read values from the Object dictionary of the encoder. These parameters are described in the "Object dictionary" section, see on page 41.

4 bytes at the most are used for CAN data, other 4 bytes are used for Command, Index and Sub-index fields. SDO messages are always followed by confirmation. It follows that when the Master sends a SDO message to the Slave, then the Slave always sends a reply (and a warning, should an error occur).

SDO structure:

IDENTIFIER		
COB-ID(hex)		
F.C. Node-ID		
•		

from 4 to 8 CAN data bytes							
0 1 2 3 4 5 6 7							
Com	Com Index Sub Data						
1byte LSB MSB 1byte LSB MSB							

ComcommandIndexparameter indexSubparameter sub-index

Data parameter value (either read or written into the parameter)

6.7.1 Command

The command byte contains the type of telegram transmitted to the CAN network.

Three types of telegram are available:

- Set: to send configuration parameters to a device;
- Req: used by the Master to read data from a Slave device;
- Warnings: used by the Slave to send error messages to the Master (e.g. Object does not exist in the object dictionary, ...).

Command	СОВ	COB type	Data length
22h	Set	M → S request	not spec.
23h	Set	M → S request	4 byte
2Bh	Set	M → S request	2 byte
2Fh	Set	M → S request	1 byte

60h	Set	S → M confirmation	0 byte
40h	Req	M → S request	0 byte
42h	Req	$S \rightarrow M$ reply	not spec.
43h	Req	$S \rightarrow M$ reply	4 byte
4Bh	Req	S → M reply	2 byte
4Fh	Req	S → M reply	1 byte
41h	Req	S \rightarrow M reply segmen	nted SDO
80h	Warning	$S \rightarrow M$ reply	4 byte

6.8 Object dictionary

The most important part of a device profile is the Object Dictionary. The Object Dictionary is essentially a grouping of objects accessible via the network in an ordered, pre-defined fashion.

The user-related objects are grouped in three main areas: the Communication Profile Area, the Manufacturer Specific Profile Area and the Standardised Device Profile Area. The objects are all described in the EDS file.

The **Communication Profile Area** at indexes from 1000h to 1FFFh contains the communication specific parameters for the CANopen network. These entries are common to all devices. NMT services, PDO objects and SDO objects are described in this section. The Communication Profile Area objects comply with the "CiA Draft Standard Proposal 301 CANopen Application layer and communication profile". Refer to the "6.8.1 Communication Profile Area objects (DS 301)" section on page 42.

The **Manufacturer Specific Profile Area** at indexes from 2000h to 5FFFh is free to add manufacturer-specific functionality. Refer to the "6.8.2 Manufacturer Specific Profile Area objects" section on page 54.

The **Standardised Device Profile Area** at indexes from 6000h to 9FFFh contains all data objects common to a class of devices that can be read or written via the network. The device profiles may use entries from 6000h to 9FFFh to describe the device parameters and the device functionality. The Standardised Device Profile Area objects comply with the "CiA Draft Standard 406 CANopen Device profile for encoders". Refer to the "6.8.3 Standardised Device Profile Area objects (DS 406)" section on page 58.

In the following pages the objects implemented are listed and described as follows:

Index-subindex Object name

[data types, attribute]

- Index and subindex are expressed in hexadecimal notation.
- Attribute:

ro = read only access

rw = read and write access

Unsigned 16 data type:

Process data bytes							
byte 4	byte 5						
LSByte	MSByte						

Unsigned32 data type:

	Process data bytes									
byte 4	byte 5	byte 6	byte 7							
LSByte			MSByte							

6.8.1 Communication Profile Area objects (DS 301)

1000-00 Device type

[Unsigned32, ro]

Default = 0001 0196h = singleturn encoder, DS 406 0002 0196h = multiturn encoder, DS 406

1001-00 Error register

[Unsigned8, ro]

Should an error occur, bit 0 of this object is set to "1".

Default = 00h

1003 Predefined error field

This object is intended to show the last four errors which caused an emergency message to be triggered. For any information refer to the "6.10 Emergency objects" section on page 72.

- **00 Number of occurred errors** [Unsigned8, rw] (write 00h to delete the error history)
- **01 Last error occurred** [Unsigned32, ro]
- 02-04 Previous errors occurred [Unsigned32, ro]

1005-00 COB_ID SYNC message

[Unsigned32, rw] Default = 0000 0080h

1008-00 Manufacturer device name

[String, ro]

It shows the name of the device.

Default = "Ax58-CB"

1009-00 Manufacturer hardware version

[String, ro]

It shows the hardware version of the device.

Default = device dependent

100A-00 Manufacturer software version

[String, ro]

It shows the software version of the device.

Default = device dependent

100C-00 Guard time

[Unsigned16, rw]

NOTE

This object is operational only if the bit 14 **Error Control protocols** in the 6000-00 **Operating parameters** object is set to 0 = Node Guarding protocol enabled.

It allows to set the Guard time expressed in milliseconds (msec).

The 100C-00 Guard time object is used in the "Node guarding protocol" controlled by the Master. For more details see the "6.11 Node guarding protocol" section on page 73.

Default = 0000h

100D-00 Life time factor

[Unsigned8, rw]

NOTE

This object is operational only if the bit 14 **Error Control protocols** in the 6000-00 **Operating parameters** object is set to 0 = Node Guarding protocol enabled.

The 100D-00 Life time factor object is used in the "Node guarding protocol" controlled by the Master. For more details see the "6.11 Node guarding protocol" section on page 73.

Default = 00h

1010-01 Store parameters

[Unsigned32, rw]

Use this object to save all parameters on non-volatile memory.

Write "save" (ASCII code in hexadecimal form) in the data bytes:

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub	Data bytes			
600+ID	23	10	10	01	73 61 7		76	65
					s a v			e

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	lex	Sub	Data bytes			
580+ID	60	10	10	01	00	00	00	00

1011-01 Restore default parameters

[Unsig32, rw]

This object allows the operator to restore all parameters to default values (default values are set at the factory by Lika Electronic engineers to allow the operator to run the device for standard operation in a safe mode).

Write "load" (ASCII code in hexadecimal form) in the data bytes and then issue a **Reset node** command:

Master → Encoder

COB-ID		Cmd	Inc	lex	Sub	Data bytes			
600+ID		23	11	10	01	6C 6F 61 0			64
	_						0	а	d

Fncoder → Master (confirmation)

		naster (communation)									
COB-ID	Cmd	Ind	dex	Sub	Data bytes						
580+ID	60	11	10	01	00	00	00	00			

Master → Encoder (Reset node)

COB-ID	Cmd	Slave ID
000	81	ID

Encoder → Master (Boot-up)

COB-ID	Cmd
700+ID	00

NOTE

Save the default values after upload using the store parameters function (see the 1010–01 Store parameters object).

1014-00 COB-ID EMCY

[Unsigned32, rw]

This object defines the COB-ID used for sending emergency messages (EMCY). If the node address is set using the internal dip-switches (i.e. at least one dip-switch for setting the node has HIGH logic level = 1), when the power is turned on, this object is always forced to the default value. Otherwise, if the node address is set via software (i.e. all dip-switches for setting the node have LOW logic level = 0) it retains the set value, unless a software procedure for setting a new address is forced at power on.

Default = 0000 0080h + NodelD

1015-00 Inhibit time EMCY

[Unsigned16, rw]

Inhibit time of the emergency messages (EMCY) expressed in multiples of 100 µs. When set to 0, this function is disabled.

Default = 0000h

1016-01 Consumer Heartbeat time

[Unsigned32, rw]

WARNING

The Heartbeat protocol is available only for multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384. Singleturn encoders only implement the Node Guarding protocol.

NOTE

This object is operational only if the bit 14 **Error Control protocols** in the **6000–00 Operating parameters** object is set to 1 = Heartbeat protocol enabled; and the value in the **1016–01 Consumer Heartbeat time** and/or **1017–00 Producer Heartbeat time** objects is other than 0.

The 1016-01 Consumer Heartbeat time object defines the expected heartbeat cycle time (i.e. the maximum time, expressed in milliseconds, within which the arrival of a heartbeat message is expected by the node) and thus has to be higher than the corresponding 1017-00 Producer Heartbeat time configured on the device producing the heartbeat. Monitoring starts after the reception of the first heartbeat. If no heartbeat is received within the set time from the Consumer Node, a heartbeat failure event occurs. If the 1016-01 Consumer Heartbeat time is 0, the corresponding entry is not used. The time has to be a multiple of 1 ms. It also set the Node-ID of the monitored device. For more details see the "6.12 Heartbeat protocol" section on page 75.

Default = 0000 0000h

WARNING

The Node-ID of the monitored device [bits 16 ... 23] must be less than or equal to 127 and different from the Node-ID of the consumer.

FXAMPIF

We want to set the 1016-01 Consumer Heartbeat time to 200 ms (C8h) in the node having address ID and enable it to receive a message from node 5 (Node-ID of the monitored device = 5).

Master → Encoder

master 7 Erreader												
COB-ID	Cmd	Inc	lex	Sub	Process data							
600+ID	23	16	10	01	C8	00	05	00				
						umer at time	Node-ID of monitored device					

Encoder → Master (confirmation)

		(,				
COB-ID	Cm	d In	dex	Sub	Data bytes			
580+ID	60	16	10	01	00	00	00	00

1017-00 Producer Heartbeat time

[Unsigned16, rw]

WARNING

The Heartbeat protocol is available only for multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384. Singleturn encoders only implement the Node Guarding protocol.

NOTE

This object is operational only if the bit 14 Error Control protocols in the 6000–00 Operating parameters object is set to 1 = Heartbeat protocol enabled; and the value in the 1016–01 Consumer Heartbeat time and/or 1017–00 Producer Heartbeat time objects is other than 0.

The 1017-00 Producer Heartbeat time object defines the cycle time of the heartbeat, i.e. the interval between the transmission of two heartbeat messages. The producer heartbeat time is 0 if it not used (the heartbeat mechanism is disabled). If a device starts with a value for the 1017-00 Producer Heartbeat time that is not 0, the Heartbeat protocol starts on the state transition from INITIALISIATION to PRE-OPERATIONAL. In this case the Boot-up message is regarded as first heartbeat message. The time has to be a multiple of 1 ms. For more details see the "6.12 Heartbeat protocol" section on page 75.

Default = 0000h

EXAMPLE

We want to set the **1017-00 Producer Heartbeat time** to 100 ms (64h) in the node having address ID.

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub	Process data				
600+ID	23	17	10	00	64	00	00	00	
					Producer	heartbeat			
					tir	ne			

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	lex	Sub	Data bytes			
580+ID	60	17	10	0	00	00	00	00

1018 Identity object

• **01 Vendor number** provided by CIA organization [Unsigned32, ro] Default = 0000 012Eh

• **02 Product number** [Unsigned32, ro]

Default = 0000 0000h

• **03 Revision number** [Unsigned32, ro]

Default = 0000 0001h

1800 PDO1 parameters

PDO1 message is used by default for <u>cyclic transmission of the position value</u>. For more information refer to the "6.6 PDO objects" section on page 39. See the **6200–00 Cyclic time** object to set the cyclic timer.

• 01 COB-ID of PDO1 [Unsigned32, rw]

Bit number	Value	Meaning			
21 (mah)	0	PDO exists / is valid			
31 (msb)	1	PDO does not exist / is not valid			
30	0	RTR allowed on this PDO (not implemented)			
30	1	no RTR allowed on this PDO			
29	0	11-bit ID (CAN 2.0A)			
29	1	29-bit ID (CAN 2.0B)			
0		if bit 29 = 0			
28 11	Χ	if bit 29 = 1: bits 28-11 of 29-bit-COB-ID			
10 0 (lsb)	Χ	bits 10-0 of COB-ID			

Default = 4000 0180h+NodelD (no RTR, COB-ID)

WARNING

It is mandatory to set the bit 30 of COB-ID to 1 (value 0 is not allowed). This means that "No RTR is allowed on the PDO".

If the node address is set using the internal dip-switches (i.e. at least one dip-switch for setting the node has HIGH logic level = 1), when the power is turned on, this object is always forced to the default value. Otherwise, if the node address is set via software (i.e. all dip-switches for setting the node have LOW logic level = 0) it retains the set value, unless a software procedure for setting a new address is forced at power on.

• **02 Transmission type** [Unsigned8, rw]

Transmission type	PDO transmission	
00h (0)	Acyclic, synchronous	not implemented
01h F0h (1 240)	Cyclic, synchronous	implemented
F1h FBh (241 251)	not implemented	l – reserved
FCh (252)	Synchronous, RTR only	not implemented
FDh (253)	Asynchronous, RTR only	not implemented
FEh (254)	Asynchronous, manufacturer specific	implemented
FFh (255)	Asynchronous, device profile specific	not implemented

Default = FEh (cyclic transmission, see hereafter and the **6200–00 Cyclic time** object)

WARNING

Following an attempt to set the **Transmission Type** to 0, the value is accepted but the PDO message is not sent; following an attempt to change the **Transmission Type** to any other value that is not supported by the device, an abort message (abort code = 0609 0030h: **Value range of parameter exceeded**) is generated.

If the value next to the 6200-00 Cyclic time object≠ 0, the PDO message is sent cyclically and the interval between two messages is the time set next to the 6200-00 Cyclic time object; otherwise, if the value next to the 6200-00 Cyclic time object= 0, the PDO message is not sent.

1801 PDO2 parameters

PDO2 message is used by default for <u>synchronous transmission of the position</u> <u>value</u>. For more information refer to the "6.6 PDO objects" section on page 39.

• **01 COB-ID of PDO2** [Unsigned32, rw]

Bit number	Value	Meaning			
21 (mah)	0	PDO exists / is valid			
31 (msb)	1	PDO does not exist / is not valid			
20	0	RTR allowed on this PDO (not implemented)			
30	1	no RTR allowed on this PDO			
20	0	11-bit ID (CAN 2.0A)			
29	1	29-bit ID (CAN 2.0B)			
28 11	0	if bit 29 = 0			
20 11	Χ	if bit 29 = 1: bits 28-11 of 29-bit-COB-ID			
10 0 (lsb)	Χ	bits 10-0 of COB-ID			

Default = 4000 0280h+NodelD (no RTR, COB-ID)

WARNING

It is mandatory to set the bit 30 of COB-ID to 1 (value 0 is not allowed). This means that "No RTR is allowed on the PDO".

If the node address is set using the internal dip-switches (i.e. at least one dip-switch for setting the node has HIGH logic level = 1), when the power is turned on, this object is always forced to the default value. Otherwise, if the node address is set via software (i.e. all dip-switches for setting the node have LOW logic level = 0) it retains the set value, unless a software procedure for setting a new address is forced at power on.

• **02 Transmission type** [Unsigned8, rw]

Transmission type	PDO transmission	
00h (0)	Acyclic, synchronous	not implemented
01h F0h (1 240)	Cyclic, synchronous	implemented
F1h FBh (241 251)	not implemented	- reserved
FCh (252)	Synchronous, RTR only	not implemented
FDh (253)	Asynchronous, RTR only	not implemented
FEh (254)	Asynchronous, manufacturer specific	implemented
FFh (255)	Asynchronous, device profile specific	not implemented

Default = 01h (synchronous transmission at each SYNC command)
The position value is transmitted after the set number of SYNC commands.

The interval in SYNC commands must be set next to this 1801 PDO2 parameters, sub 2 object.

WARNING

Following an attempt to set the **Transmission Type** to 0, the value is accepted but the PDO message is not sent; following an attempt to change the **Transmission Type** to any other value that is not supported by the device, an abort message (abort code = 0609 0030h: **Value range of parameter exceeded**) is generated.

If the value next to the 6200-00 Cyclic time object≠ 0, the PDO message is sent cyclically and the interval between two messages is the time set next to the 6200-00 Cyclic time object; otherwise, if the value next to the 6200-00 Cyclic time object= 0, the PDO message is not sent.

1802 PDO3 parameters

PDO3 message is used by default for <u>synchronous transmission of the position</u> <u>value</u>. For more information refer to the "6.6 PDO objects" section on page 39.

01 COB-ID of PDO3 [Unsigned32, rw]

Bit number	Value	Meaning			
21 (mah)	0	PDO exists / is valid			
31 (msb)	1	PDO does not exist / is not valid			
30	0	RTR allowed on this PDO (not implemented)			
30	1	no RTR allowed on this PDO			
29	0	11-bit ID (CAN 2.0A)			
29	1	29-bit ID (CAN 2.0B)			
28 11	0	if bit 29 = 0			
20 11	Χ	if bit 29 = 1: bits 28-11 of 29-bit-COB-ID			
10 0 (lsb)	X bits 10-0 of COB-ID				

Default = C000 0380h+NodelD (disable, no RTR)

WARNING

It is mandatory to set the bit 30 of COB-ID to 1 (value 0 is not allowed). This means that "No RTR is allowed on the PDO".

If the node address is set using the internal dip-switches (i.e. at least one dip-switch for setting the node has HIGH logic level = 1), when the power is turned on, this object is always forced to the default value. Otherwise, if the node address is set via software (i.e. all dip-switches for setting the node have LOW logic level = 0) it retains the set value, unless a software procedure for setting a new address is forced at power on.

• **02 Transmission type** [Unsigned8, rw]

Transmission type	PDO transmission	
00h (0)	Acyclic, synchronous	not implemented
01h F0h (1 240)	Cyclic, synchronous	implemented
F1h FBh (241 251)	not implemented	- reserved
FCh (252)	Synchronous, RTR only	not implemented
FDh (253)	Asynchronous, RTR only	not implemented
FEh (254)	Asynchronous, manufacturer specific	implemented
FFh (255)	Asynchronous, device profile specific	not implemented

Default = 01h (synchronous transmission at each SYNC command)
The position value is transmitted after the set number of SYNC commands.

The interval in SYNC commands must be set next to this 1802 PD03 parameters, sub 2 object.

WARNING

Following an attempt to set the **Transmission Type** to 0, the value is accepted but the PDO message is not sent; following an attempt to change the **Transmission Type** to any other value that is not supported by the device, an abort message (abort code = 0609 0030h: **Value range of parameter exceeded**) is generated.

If the value next to the **6200–00 Cyclic time** object≠ 0, the PDO message is sent cyclically and the interval between two messages is the time set next to the **6200–00 Cyclic time** object; otherwise, if the value next to the **6200–00 Cyclic time** object= 0, the PDO message is not sent.

1803 PDO4 parameters

PDO4 is used by default for <u>cyclic transmission of the velocity value</u>. For more information refer to the "6.6 PDO objects" section on page 39. See the **6200–00 Cyclic time** object to set the cyclic timer.

01 COB-ID of PDO4 [Unsigned32, rw]

Bit number	Value	Meaning			
0		PDO exists / is valid			
31 (msb)	1	PDO does not exist / is not valid			
20	0	RTR allowed on this PDO (not implemented)			
30	1	no RTR allowed on this PDO			
	0	11-bit ID (CAN 2.0A)			

29	1	29-bit ID (CAN 2.0B)
28 11	0	if bit 29 = 0
	Χ	if bit 29 = 1: bits 28-11 of 29-bit-COB-ID
10 0 (lsb)	Х	bits 10-0 of COB-ID

Default = C000 0480h+NodeID (no RTR, COB-ID)

WARNING

It is mandatory to set the bit 30 of COB-ID to 1 (value 0 is not allowed). This means that "No RTR is allowed on the PDO".

If the node address is set using the internal dip-switches (i.e. at least one dip-switch for setting the node has HIGH logic level = 1), when the power is turned on, this object is always forced to the default value. Otherwise, if the node address is set via software (i.e. all dip-switches for setting the node have LOW logic level = 0) it retains the set value, unless a software procedure for setting a new address is forced at power on.

• **02 Transmission type** [Unsigned8, rw]

Transmission type	PDO transmission	
00h (0)	Acyclic, synchronous	not implemented
01h F0h (1 240)	Cyclic, synchronous	implemented
F1h FBh (241 251)	not implemented	- reserved
FCh (252)	Synchronous, RTR only	not implemented
FDh (253)	Asynchronous, RTR only	not implemented
FEh (254)	Asynchronous, manufacturer specific	implemented
FFh (255)	Asynchronous, device profile specific	not implemented

Default = FEh (cyclic transmission, see hereafter and the **6200-00 Cyclic time** object)

WARNING

Following an attempt to set the **Transmission Type** to 0, the value is accepted but the PDO message is not sent; following an attempt to change the **Transmission Type** to any other value that is not supported by the device, an abort message (abort code = 0609 0030h: **Value range of parameter exceeded**) is generated.

If the value next to the 6200-00 Cyclic time object≠ 0, the PDO message is sent cyclically and the interval between two messages is the time set next to the 6200-00 Cyclic time object; otherwise, if the value next to the 6200-00 Cyclic time object= 0, the PDO message is not sent.

NOTE

- Transmission of PDO1, PDO2, PDO3 and PDO4 messages can be enabled (or disabled) by setting to "0" (or "1") the most significant bit (msb) used by PDO (180xh, sub1 object).
- Cyclic transmission or synchronous transmission can be modified by setting the **180xh** sub 2 object:

01h: synchronous transmission at each SYNC command;

02h: synchronous transmission after two SYNC commands;

٠..

FEh: cyclic transmission:

if 6200-00 Cyclic time $\neq 0 \Rightarrow$ "cyclic transmission": the cycle time is set next to the 6200h object;

if 6200-00 Cyclic time = $0 \rightarrow$ the PDO message is not sent.

1A00-01 TPD01 mapping parameter

[Unsig32, rw]

This object contains the mapped position value of the encoder according to the DS 406 device profile specifications.

Default = 6004 0020h

1A01-01 TPD02 mapping parameter

[Unsig32, rw]

See the 1A00-01 TPD01 mapping parameter, sub 1 object.

Default = 60040020h

1A02-01 TPD03 mapping parameter

[Unsig32, rw]

See the 1A00-01 TPD01 mapping parameter, sub 1 object.

Default = 6004 0020h

1A03-01 TPDO4 mapping parameter

[Unsig32, rw]

This object contains the mapped velocity value of the encoder according to manufacturer profile.

Default = 3006 0020h

6.8.2 Manufacturer Specific Profile Area objects

2104-00 Limit switch min.

[Unsigned32, rw]

This object is used to set the lowest software limit switch. (-).

If the encoder position is greater than the value set in this object, then the bit 12 of the 6500-00 Operating status object will be set to "0".

If the encoder position is less than the value set in this object, then the bit 12 of the 6500–00 Operating status object will be set to "1".

To enable this function set the bit 12 **Limit switch min.** of the **6000–00 Operating parameters** object to "1".

Default = 0000 0010h

2105-00 Limit switch max.

[Unsigned32, rw]

This object is used to set the highest software limit switch. (+).

If the encoder position is less than the value set in this object, then the bit 13 of the. **6500–00 Operating status** object will be set to "0".

If the encoder position is greater than the value set in this object, then the bit 13 of the. **6500-00 Operating status** object will be set to "1".

To enable this function set the bit 13 **Limit switch max.** of the **6000–00 Operating parameters** object to "1".

Default = 003F FFF0h

3000-00 Baud rate

[Unsigned8, rw]

NOTE

The DIP A dip switch is available for ASx58... singleturn encoder only. In the ASx58x... singleturn encoders the transmission rate can be set both via hardware by using the DIP A dip switch or via software by setting this object. In the AMx58x... multiturn encoders the transmission rate can be set only via software by setting this object.

This object is meant to set the baud rate (transmission rate) according to the following table:

Data byte	Baud rate
00h	20 Kbit/s
01h	50 Kbit/s
02h	100 Kbit/s
03h	125 Kbit/s
04h	250 Kbit/s
05h	500 Kbit/s (default)
06h	800 Kbit/s
07h	1000 Kbit/s

The bit rate is set through the **3000–00 Baud rate** object only if the bit 4 in the DIP A dip switch is set to "OFF". If the bit 4 in the DIP A dip switch is set to "ON", the bit rate is set by DIP A. For any further information refer to the "4.6.2 Baud rate: DIP A" section on page 29.

To change the baud rate value you have to:

- set the 3000-00 Baud rate object;
- send a **Reset node** command (or **Reset communication** command);
- save the parameter;
- set the Master to the new baud rate.

Default = 05h

Master → Encoder

COB-ID	Cmd	Index		Sub	Data byte
600+ID	2F	00	30	00	see table

Encoder → Master (confirmation)

COB-ID	Cmd	Index		Sub	Data byte
580+ID	60	00	30	00	00

Master → Encoder (Reset node)

COB-ID	Cmd	Slave ID
000	81	ID

Set the Master device to the new baud rate:

Encoder → Master (Boot-up with new baud rate)

	(= -
COB-ID	Cmd
700+ID	00

NOTE

To save the new Baud rate value execute the store parameters function (see the **1010–01 Store parameters** object).

When the power is turned off, the parameters not saved are lost.

3001-00 Node-ID

[Unsigned8, rw]

NOTE

The DIP B dip switch is available for ASx58... singleturn encoder only. In the ASx58x... singleturn encoders the node number can be set both via hardware by using the DIP B dip switch or via software by setting this object. In the AMx58x... multiturn encoders the node number can be set only via software by setting this object.

This object defines the node identifier (node ID) of the device. The node addresses are allowed in the range 1 to 127. The default value is 1.

The node number is set through the **3001–00 Node–ID** object only if all bits in the DIP B dip switch are set to "OFF". If one bit at least of the DIP B dip switch is set to "ON" the node number is set by DIP B. For any further information refer to the "4.6.3 Node number: DIP B" section on page 30.

To change the Node-ID value you have to:

- set the 3001-00 Node-ID object;
- send a **Reset node** command;
- save the parameter.

Default = 01h

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub	Data byte
600+ID	2F	01	30	00	new Node-ID

Encoder → Master (confirmation)

COB-ID	Cmd	Index		Sub	Data byte
580+ID	60	01	30	00	00

Master → Encoder (Reset node)

COB-ID	Cmd	Slave ID
000	81	old ID

Encoder → Master (Boot-up with new Node-ID)

		(-
C	OB-ID	Cmd	
7	00+ID	00	

NOTE

To save the new Node-ID value execute the store parameters function (see the **1010–01 Store parameters** object).

When the power is turned off, the parameters not saved are lost.

3005-00 Velocity format

[Unsigned8, rw]

This attribute defines the engineering units for the velocity value.

00h = steps/s: number of steps per second (default);

01h = rpm: number of revolutions per minute.

Default = 00h

3006-00 Velocity value

[Unsigned32, ro]

This attribute shows the current output speed value detected by the position sensor and calculated every 100 ms.

The value can be expressed in either steps per second or revolutions per minute according to the setting in the previous **3005–00 Velocity format** object.

The value is transmitted according to the settings in the 1803 PDO4 parameters object.

6.8.3 Standardised Device Profile Area objects (DS 406)

6000-00 Operating parameters

[Unsigned16, rw]

Bit	Function	bit = 0	bit = 1					
0	Code sequence	CW (clockwise)	CCW (counter clockwise)					
1		not used						
2	Scaling function	disabled	enabled					
3 11		not used						
12	Limit switch min.	disabled	enabled					
13	Limit switch max.	disabled	enabled					
14	Error Control protocols*	Node Guarding enabled	Heartbeat enabled					
15		not used						

^{*} Multiturn encoders only

Default = 0000h

Code sequence

It defines whether the position value output by the transducer increases when the encoder shaft rotates clockwise (CW) or counterclockwise (CCW). When $\mathbf{Code\ sequence} = 0 = \mathrm{CW}$, the position value increases when the encoder shaft rotates clockwise; on the contrary, when $\mathbf{Code\ sequence} = 1 = \mathrm{CCW}$, the position value increases when the encoder shaft rotates counterclockwise. CW and CCW rotations are viewed from the shaft end. $\mathrm{Default} = 0$

To know whether the **Code sequence** is currently set to clockwise or counterclockwise, you can read the bit 0 **Code sequence** of the **6500–00 Operating status** object, see on page 66.

Scaling function

When this option is disabled, the device uses the <u>physical resolution values</u> (see the 6501-00 Singleturn resolution and 6502-00 Number of <u>distinguishable revolutions</u> objects); if it is enabled, it uses the <u>custom resolution</u> set in the 6001-00 Measuring units per revolution and 6002-00 Total measuring range objects with the following relation:

Transmitted position =

6001-00 Measuring units per revolution

6501-00 Singleturn resolution

* real position ≤ 6002-00 Total measuring range

The value in the 6001-00 Measuring units per revolution object must be equal to or less than the value in the 6501-00 Singleturn resolution object.

The total custom resolution in the 6002–00 Total measuring range object must be equal to or less than the maximum physical value (6501–00 Singleturn resolution * 6502–00 Number of distinguishable revolutions). Default = 0

To know whether the **Scaling function** is currently enabled, you can read the bit 2 **Scaling function** of the **6500–00 Operating status** object, see on page 66.

WARNING

Every time you enable the scaling function and/or change the scaling values (see the 6001–00 Measuring units per revolution and 6002–00 Total measuring range objects) then you are required to set a new preset value (see the 6003–00 Preset value object) and finally save the new parameters (see the 1010–01 Store parameters object).

Limit switch min. Limit switch max.

It allows to enable / disable the function of the 2104-00 Limit switch min. and 2105-00 Limit switch max. objects. For further information see on page 54.

Default = 0

To know whether the Limit switch min. / Limit switch max. are currently enabled, you can read the bit 12 Limit switch min. and bit 13 Limit switch max. of the 6500-00 Operating status object, see on page 66.

Error Control protocols

WARNING

This option and the choice between Node Guarding protocol and Heartbeat protocol are available only for multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384. Singleturn encoders only implement the Node Guarding protocol, thus this bit is not used.

It allows to enable either the Node Guarding protocol or the Heartbeat protocol. When Error Control protocols = 0, the Node Guarding protocol is enabled; you can set the 100C-00 Guard time and 100D-00 Life time factor objects to configure the Node Guarding cycle. For further information see on page 73. On the contrary, when Error Control protocols = 1, the Heartbeat protocol is enabled; you can set the 1016-01 Consumer Heartbeat time and 1017-00 Producer Heartbeat time objects to configure the Heartbeat cycle. For further information see on page 75.

Default = 0

To know whether **Error Control protocols** is currently set to Node Guarding protocol or Heartbeat protocol, you can read the bit 14 **Error Control protocols** of the **6500–00 Operating status** object, see on page 67.

6001-00 Measuring units per revolution

[Unsig32, rw]

WARNING

This object is active only if the bit 2 **Scaling function** in the **6000–00 Operating parameters** object is set to "=1"; otherwise it is ignored and the system uses the physical values (**6501–00 Singleturn resolution** and **6502–00 Number of distinguishable revolutions**) to calculate the position information.

This object sets a custom number of distinguishable steps per revolution (custom singleturn resolution).

To avoid counting errors, check that

Allowed values are equal to or less than **6501–00 Singleturn resolution** (see the encoder label).

```
Default = 4,096 (min. = 1, max. = 4,096) for AMx58x12/...

8,192 (min. = 1, max. = 8,192) for Ax58x13/...

65,536 (min. = 1, max. = 65,536) for Ax58x16/...

262,144 (min. = 1, max. = 262,144) for ASx58x18/...
```

Set the resolution per revolution 6001–00 Measuring units per revolution (2¹⁶=0001 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	nd Index		Sub	Process data			
600+ID	23	01	60	00	00	00	01	00

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	Index		ub Pro		s data	
580+ID	60	01	60	00	00	00	00	00

WARNING

When you set a new value next to the 6001-00 Measuring units per revolution object, please always check also the 6002-00 Total measuring range object value and be sure that the resulting number of revolutions

complies with the physical number of revolutions of the device (see the **6502–00 Number of distinguishable revolutions** object).

Let's suppose that the AM5816/16384CB encoder is programmed as follows: **6001–00 Measuring units per revolution**: 8192 **6002–00 Total measuring range** = 33,554,432 = 8192 (cpr) * 4096 (rev.) Let's set a new singleturn resolution, for instance: **6001–00 Measuring units per revolution** = 360.

If we do not change the **6002–00 Total measuring range** value at the same time, we will get the following result:

Number of revolutions =
$$\frac{33,554,432 \text{ (6002-00 Total measuring range)}}{360 \text{ (6001-00 Measuring units per revolution)}} = 93,206.755...$$

As you can see, the encoder is required to carry out more than 93,000 revolutions, this cannot be as the hardware number of revolutions is, as stated, 16,384 (see the 6502–00 Number of distinguishable revolutions object). When this happens, the encoder falls into an error signalling the faulty condition through the diagnostic LEDs (see on page 32).

WARNING

Every time you change the value in this object then you are required to set a new preset value (see the 6003-00 Preset value object) and finally save the new parameters (see the 1010-01 Store parameters object).

6002-00 Total measuring range

[Unsigned32, rw]

WARNING

This object is active only if the bit 2 **Scaling function** in the **6000–00 Operating parameters** object is set to "=1"; otherwise it is ignored and the system uses the physical values (**6501–00 Singleturn resolution** and **6502–00 Number of distinguishable revolutions**) to calculate the position information.

This object sets a custom number of distinguishable steps over the total measuring range. The total resolution of the encoder results from the product of 6001–00 Measuring units per revolution by the required Number of revolutions.

Allowed values are equal to or less than the **Total hardware resolution** (6501–00 Singleturn resolution * 6502–00 Number of distinguishable revolutions, see the encoder label).

```
Default = 8,192 (min. = 1, max. = 8,192) for ASx58x13/...
65,536 (min. = 1, max. = 65,536) for ASx58x16/...
262,144 (min. = 1, max. = 262,144) for ASx58x18/...
16,777,216 (min. = 1, max. = 16,777,216) for AMx58x12/4096...
134,217,728 (min. = 1, max. = 134,217,728) for AMx58x13/16384...
1,073,741,824 (min. = 1, max. = 1,073,741,824) for AMx58x16/16384...
```

Set the total resolution 6002-00 Total measuring range (2²⁸=1000 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	nd Index		Sub	Process data			
600+ID	23	02	60	00	00	00	00	10

Encoder → Master (Set confirmation)

COB-ID	Cmd	Index		Sub		Process data		
580+ID	60	02	60	00	00	00	00	00

WARNING

When you set a new value next to the 6002-00 Total measuring range object, please always check also the 6001-00 Measuring units per revolution object value and be sure that the resulting number of revolutions complies with the Hardware number of revolutions of the device.

Let's suppose that the AM5816/16384CB encoder is programmed as follows:

6001-00 Measuring units per revolution: 8192

6002-00 Total measuring range = 33,554,432 = 8192 (cpr) * 4096 (rev.)

Let's set a new total resolution, for instance: **6002-00 Total measuring range** = 360.

As the 6002-00 Total measuring range must be greater than or equal to the 6001-00 Measuring units per revolution, the above setting is not allowed. When this happens, the encoder falls into an error signalling the faulty condition through the diagnostic LEDs (see on page 32).

WARNING

Every time you change the value in this object then you are required to set a new preset value (see the 6003–00 Preset value object) and finally save the new parameters (see the 1010–01 Store parameters object).

EXAMPLE

Multiturn encoder AM5816/16384CB-6-M (with M12 connector)

Resolution is:

- Hardware counts per revolution: = **6501-00 Singleturn resolution** = **65,536** (2¹⁶)
- Hardware number of turns: = 6502-00 Number of distinguishable revolutions = 16,384 (2¹⁴)
- Total hardware resolution: = 6501-00 Singleturn resolution 65,536 (2¹⁶) * 6502-00 Number of distinguishable revolutions 16,384 (2¹⁴) = 1,073,741,824 (2³⁰)

The specific installation requires 2048 counts/rev. * 1024 turns:

- Enable scaling function: **6000-00 Operating parameters**, bit 2 **Scaling function** = "1"
- Counts per revolution: **6001-00 Measuring units per revolution** = 2,048 (0000 0800h)
- Total resolution: 6002-00 Total measuring range = 2,048 * 1,024 = 2,097,152 (0020 0000h)

NOTE

We suggest values which are power of 2 (2ⁿ: 2, 4, ..., 2048, 4096, 8192,...) to be set in the **6001–00 Measuring units per revolution** and **6002–00 Total measuring range** objects to avoid counting errors.

WARNING

If 6001-00 Measuring units per revolution and/or 6002-00 Total measuring range values change, the 6003-00 Preset value must be updated to new resolution. A new 6003-00 Preset value is also required.

6003-00 Preset value

[Unsigned32, rw]

This object allows to set the encoder position to a Preset value. The Preset function is meant to assign a desired value to a physical position of the encoder shaft. The chosen position will get the value set next to this object and all the previous and the following positions will get a value according to it. This function is useful, for example, when the zero position of the encoder and the zero position of the axis need to match. The preset value will be set for the position of the encoder in the moment when the preset value is transmitted. We suggest setting the preset value when the encoder is in stop.

Default = 0000 0000h

Default = 0 (min. = 0, max. = 8,192 *) for ASx58x13/...


```
0 (min. = 0, max. = 65,536 *) for ASx58x16/...

0 (min. = 0, max. = 262,144 *) for ASx58x18/...

0 (min. = 0, max. = 16,777,216 *) for AMx58x12/4096...

0 (min. = 0, max. = 134,217,728 *) for AMx58x13/16384...

0 (min. = 0, max. = 1,073,741,824 *) for AMx58x16/16384...
```

^{*} See the NOTE below.

FXAMPIF

Let's take a look at the following example to better understand the preset function and the meaning and use of the related objects: 6003-00 Preset value and 6509-00 Offset value.

The encoder position which is transmitted results from the following calculation:

Transmitted value = **read position** (it does not matter whether the position is physical or scaled) + **6003-00 Preset value** - **6509-00 Offset value**.

If you never set the 6003-00 Preset value and you never performed the preset setting, then the transmitted value and the read position are necessarily the same as 6003-00 Preset value = 0 and 6509-00 Offset value = 0.

When you set the 6003-00 Preset value and then execute the preset setting, the system saves the current encoder position in the 6509-00 Offset value object. It follows that the transmitted value and the 6003-00 Preset value are the same as read position - 6509-00 Offset value = 0; in other words, the value set next to the 6003-00 Preset value object is paired with the current position of the encoder as you wish.

For example, let's assume that the value "50" is set next to the 6003-00 Preset value object and you execute the preset setting when the encoder position is "1000". In other words, you want to receive the value "50" when the encoder reaches the position "1000".

We will obtain the following information sequence:

Transmitted value = read position (="1000") + 6003-00 Preset value (="50") - 6509-00 Offset value (="1000") = 50.

The following transmitted value will be:

Transmitted value = read position (="1001") + 6003-00 Preset value (="50") - 6509-00 Offset value (="1000") = 51. And so on.

To set the preset value you must send the following command: Set the Preset value 6003-00 Preset value (preset = 1000 = 03E8h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
600+ID	23	03	60	00	E8	03	00	00

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	60	03	60	00	00	00	00	00

NOTE

- If the scaling function is <u>disabled</u> (see the bit 2 Scaling function in the 6000-00 Operating parameters object), the 6003-00 Preset value must be less than or equal to the "Total hardware resolution" 1 (6501-00 Singleturn resolution * 6502-00 Number of distinguishable revolutions 1).
- If the scaling function is <u>enabled</u> (see bit 2 Scaling function in the 6000-00 Operating parameters object), the 6003-00 Preset value must be less than or equal to the 6002-00 Total measuring range 1.

WARNING

Check the value in the 6003-00 Preset value object and perform the preset operation every time you set a new Code sequence or change the scaled values (6001-00 Measuring units per revolution and/or 6002-00 Total measuring range).

6004-00 Position value

[Unsigned32, ro]

This object contains the current position value of the encoder.

The output value is scaled according to the scaling parameters (if the scaling function is enabled), see the bit 2 **Scaling function** of the **6000–00 Operating parameters** object.

The position value is transmitted cyclically or synchronously according to the settings in the 1800 PDO1 parameters, 1801 PDO2 parameters and 1802 PDO3 parameters objects (see on page 47).

6200-00 Cyclic time

[Unsigned16, rw]

The cyclic timer value is used in asynchronous transmission mode (**Transmission Type** = FEh) to set the interval between two following PDO transmission during a cyclic communication.

If the value next to this **6200–00 Cyclic time** object \neq 0, the PDO message is sent cyclically and the interval between two messages is the time set here; otherwise, if the value next to this **6200–00 Cyclic time** object = 0, the PDO message is not sent.

The value is expressed in milliseconds. See on pages 39 and 47.

Default = 0000h

Enable the Cyclic mode

Set the cyclic time 6200-00 Cyclic time (100 ms = 64h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
600+ID	2B	00	62	00	64	00	-	-

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	60	00	62	00	00	00	_	-

6500-00 Operating status

[Unsigned16, ro]

Bit	Function	bit = 0	bit = 1	
0	Code sequence	Clockwise	Counter- clockwise	
1				
2	Scaling function	Disabled	Enabled	
3 11	not used			
		Posit. >	Posit. <	
12	Limit switch min.	2104-00 Limit	2104-00 Limit	
		switch min.	switch min.	
		Posit. <	Posit. >	
13	Limit switch max.	2105-00 Limit	2105-00 Limit	
		switch max.	switch max.	
14	Error Control protocols*	Node Guarding	Heartbeat	
14		protocol enabled	protocol enabled	
15	Current operating state	Stopped / Pre-operational	Operational	

 ^{*} Multiturn encoder only

Code sequence

It shows whether the code sequence is currently set to clockwise (CW) or counter-clockwise (CCW). To set the code sequence to either CW or CCW you must set the bit 0 **Code sequence** of the **6000–00 Operating parameters** object to 0 / 1. See on page 58.

Scaling function

It shows whether the scaling function is currently disabled or enabled. To disable / enable the scaling function you must set the bit 2 **Scaling function** of the **6000-00 Operating parameters** object to 0 / 1. See on page 58.

Limit switch min.

If the encoder position is greater than the value set in the **2104-00 Limit** switch min. object, the bit 12 of this object is set to "0".

If the encoder position is less than the value set in the **2104–00 Limit switch** min. object, the bit 12 of this object is set to "1".

To enable this function set the bit 12 **Limit switch min.** of the **6000–00 Operating parameters** object to "1". See on page 59.

Limit switch max.

If the encoder position is less than the value set in the 2105-00 Limit switch max. object, the bit 13 of this object is set to "0".

If the encoder position is greater than the value set in the **2105–00 Limit** switch max. object, the bit 13 of this object is set to "1".

To enable this function set the bit 13 **Limit switch max.** of the **6000–00 Operating parameters** object to "1". See on page 59.

Error Control protocols

WARNING

This status bit and the choice between Node Guarding protocol and Heartbeat protocol are available only for multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384. Singleturn encoders only implement the Node Guarding protocol, thus this bit is not used.

It shows whether the error control function is is currently set to "Node Guarding protocol" or "Heartbeat protocol". To enable the "Node Guarding protocol" or the "Heartbeat protocol" you must set the bit 14 **Error Control protocols** of the **6000–00 Operating parameters** object to 0 / 1. See on page 59.

Current operating state

It shows the current operating state of the unit. For further information on the available states see the "6.2 State machine" section on page 35.

bit 15 = 0: **Stopped** or **Pre-operational** state;

bit 15 = 1: Operational state.

6501-00 Singleturn resolution

[Unsigned32, ro]

WARNING

This object is active only if the bit 2 **Scaling function** in the **6000–00 Operating parameters** object is set to "=0"; otherwise it is ignored and the system uses the custom values (**6001–00 Measuring units per revolution** and **6002–00 Total measuring range**) to calculate the position information.

This object is intended to show the number of <u>physical</u> distinguishable steps per each revolution provided by the hardware (physical singleturn resolution).

If you want to set a custom resolution see the **6001-00 Measuring units per revolution** object.

Default = 4,096 for AMx58x12/... 8,192 for Ax58x13/... 65,536 for Ax58x16/... 262,144 for ASx58x18/...

6502-00 Number of distinguishable revolutions

[Unsig16, ro]

WARNING

This object is active only if the bit 2 **Scaling function** in the **6000–00 Operating parameters** object is set to "=0"; otherwise it is ignored and the system uses the custom values (**6001–00 Measuring units per revolution** and **6002–00 Total measuring range**) to calculate the position information.

This object is intended to show the number of <u>physical</u> revolutions provided by the hardware (number of physical revolutions).

The **Total hardware resolution** results from **6501–00 Singleturn resolution** * **6502–00 Number of distinguishable revolutions**.

If you want to set a custom number of revolutions see the 6001-00 Measuring units per revolution and 6002-00 Total measuring range objects.

Default = 1 for ASx58x...

4,096 for AMx58x12/4096...

16,384 for AMx58x13/16384... and AMx58x16/16384

6504-00 Supported alarms

[Unsigned16, ro]

This object contains the information on the alarms supported by the encoder. No alarms are supported in this encoder.

Default = 0000h (alarms not supported)

6506-00 Supported warnings

[Unsigned16, ro]

This object contains the information on the warnings supported by the encoder. No warnings are supported in this encoder.

Default = 0000h (warnings not supported)

6507-00 Profile and software version

[Unsig32, ro]
It shows the profile and software version.
Profile version for encoders = 3.1
Software version = 1.1
Default = 0301 0101h

6508-00 Operating time

[Unsigned32, ro]

This object contains the information on the operating time. The operating time monitor stores the operating time for the encoder expressed in operating hours. The operating time is stored in the encoder non-volatile memory as long as the encoder is power supplied.

This object is currently not used in this encoder.

Default = FFFF FFFFh (not used)

6509-00 Offset value

[Integer32, ro]

As soon as you activate the preset, the current position value of the encoder is saved in this object. The offset value is then used in the preset function in order to calculate the encoder position value to be transmitted. To zero set the value in this object you must upload the factory default values (see the 1011–01 Restore default parameters object on page 44).

For any further information on the preset function and the meaning and use of the related objects and commands 6003–00 Preset value and 6509–00 Offset value refer to page 63.

Default = 0000 0000h

650A-01 Manufacturer offset value

[Integer32, ro]

This object contains the manufacturer offset value. This is the difference between the physical zero position of the encoder (zero set mechanically) and the zero position set by the manufacturer (zero set via software).

Default = 0000 0000h

650B-00 Serial number

[Unsigned32, ro]

This object contains the serial number of the encoder.

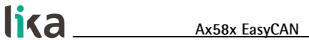
This object is currently not used in this encoder.

Default = FFFF FFFFh (not used)

NOTE

To save the new parameters execute the store parameters function (see the 1010–01 Store parameters object).

When the power is turned off or in case of **Reset node** and **Restore node** commands, the parameters not saved are lost.


70

6.9 SDO abort codes

Here follows the list and meaning of the SDO abort codes indicated by CANopen but not necessarily supported by the manufacturer. For complete information please refer to the "SDO abort transfer protocol" section in the "CiA Draft Standard 301" document available at the address www.can-cia.org.

Abort code	Description
0503 0000h	Toggle bit not alternated.
0504 0000h	SDO protocol timed out.
0504 0001h	Client/server command specifier not valid or unknown.
0504 0002h	Invalid block size (block mode only).
0504 0003h	Invalid sequence number (block mode only).
0504 0004h	CRC error (block mode only).
0504 0005h	Out of memory.
0601 0000h	Unsupported access to an object.
0601 0001h	Attempt to read a write only object.
0601 0002h	Attempt to write a read only object.
0602 0000h	Object does not exist in the object dictionary.
0604 0041h	Object cannot be mapped to the PDO.
0604 0042h	The number and length of the objects to be mapped would exceed PDO length.
0604 0043h	General parameter incompatibility reason.
0604 0047h	General internal incompatibility in the device.
0606 0000h	Access failed due to an hardware error.
0607 0010h	Data type does not match, length of service parameter does not match
0607 0012h	Data type does not match, length of service parameter too high
0607 0013h	Data type does not match, length of service parameter too low
0609 0011h	Sub-index does not exist.
0609 0030h	Invalid value for parameter (download only).
0609 0031h	Value of parameter written too high (download only).
0609 0032h	Value of parameter written too low (download only).
0609 0036h	Maximum value is less than minimum value.
060A 0023h	Resource not available: SDO connection
0800 0000h	General error
0800 0020h	Data cannot be transferred or stored to the application.
0800 0021h	Data cannot be transferred or stored to the application because of local control.
0800 0022h	Data cannot be transferred or stored to the application because of the present device state.
0800 0023h	Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails

	because of an file error).	
0800 0024h	No data available	

6.10 Emergency objects

Emergency (EMCY) objects are issued by the device when an internal error occurs.

EMCY structure:

IDENTIFIER
COB-ID(hex)
see the
1014-00 COB-
ID EMCY object

	CAN Data Byte				
0	1	2	37		
Error code		Error Sub- register	Specific code		
LSB	MSB	01	00 00		

Available error codes indicated by CANopen but not necessarily supported by the manufacturer:

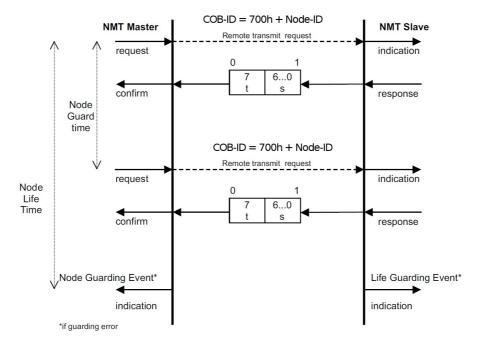
Error code	Description			
0000h	Error reset or no error			
1000h	Node guarding error			
2000h	Current – generic error			
2100h	Current, CANopen device input side – generic			
2200h	Current inside the CANopen device – generic			
2300h	Current, CANopen device output side – generic			
3000h	Voltage – generic error			
3100h	Mains voltage – generic			
3200h	Voltage inside the CANopen device – generic			
3300h	Output voltage – generic			
4000h	Temperature – generic error			
4100h	Ambient temperature – generic			
4200h	Device temperature – generic			
5000h	CANopen device hardware – generic error			
5530h	Flash memory error			
6000h	CANopen device software – generic error			
6100h	Internal software – generic			
6200h	User software – generic			
6300h	Data set – generic			

7000h	Additional modules – generic error
8000h	Monitoring – generic error
8100h	Communication – generic
8110h	CAN overrun (objects lost)
8120h	CAN in error passive mode
8130h	Life guard error or heartbeat error
8140h	Recovered from bus off
8150h	CAN-ID collision
8200h	Protocol error - generic
8210h	PDO not processed due to length error
8220h	PDO length exceeded
8230h	DAM MPDO not processed, destination object not available
8240h	Unexpected SYNC data length
8250h	RPDO timeout
9000h	External error – generic error
F000h	Additional functions – generic error
FF00h	Device specific – generic error

6.11 Node guarding protocol

WARNING

Multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384, implement both Node Guarding protocol and Heartbeat protocol. Singleturn encoders only implement the Node Guarding protocol.


When available, use the bit 14 **Error Control protocols** in the **6000–00 Operating parameters** object to enable either the Node Guarding protocol or the Heartbeat protocol. For more information refer to page 59.

When **Error Control protocols** = 0, the Node Guarding protocol is enabled.

When **Error Control protocols** = 1, the Heartbeat protocol is enabled.

This protocol is used to detect remote error in the network. Each NMT Slave uses one remote COB for the Node Guarding protocol. This protocol implements the provided initiated Error Control services.

S: the state of the NMT Slave

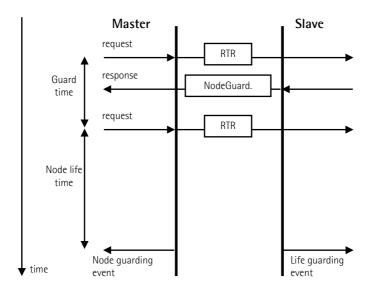
4: **STOPPED**

5: **OPERATIONAL**

127: PRE-OPERATIONAL

t: Toggle bit. The value of this bit must alternate between two consecutive responses from the NMT Slave. The value of the Toggle bit of the first response after the Node Guarding protocol becomes active is 0. The Toggle bit in the Node Guarding protocol is only reset to 0 when reset_communication is passed (no other change of the state resets the Toggle bit). If a response is received with the same value of the Toggle bit as in the preceding response then the new response is handled as if it was not received.

The NMT Master polls each NMT Slave at regular time intervals. This time-interval is called the guard time (see 100C-00 Guard time) and may be different for each NMT Slave. The response of the NMT Slave contains the state of that NMT Slave. The node life time is given by the 100C-00 Guard time multiplied by the 100D-00 Life time factor. The node life time can be different for each NMT Slave. If the NMT Slave has not been polled during its life time, a remote node error is indicated through the 'Life Guarding Event' service.


A remote node error is indicated through the 'Node guarding event' service if:

- the remote transmit request is not confirmed within the node life time;
- the reported NMT Slave state does not match the expected state.

If it has been indicated that a remote error has occurred and the errors in the guarding protocol have disappeared, it will be indicated that the remote error has been resolved through the 'Node Guarding Event' and 'Life Guarding Event' services.

At system boot the "Node guarding protocol" is disabled; this protocol is enabled automatically as soon as the Master device sends an RTR message (Remote Transmission Request) the first time.

100C-00 Guard time: interval between two RTR messages.

Node life time: maximum time available for the encoder to receive an

RTR message.

Node life time = 100C-00 Guard time * 100D-00 Life time factor.

"Node guarding" is enabled if **Node life time** \neq 0.

If the Slave does not receive an RTR message before the **Node life time** has expired, it warns activating a "Life Guarding Event". Furthermore the red LED starts flashing so indicating the Node guarding error, **1001–00 Error register** and **1003 Predefined error field** objects are updated and an error message is sent.

To reset the error send a **Reset node** command.

6.12 Heartbeat protocol

WARNING

Multiturn encoders, i.e. AM12/4096, AM13/4096, AM12/16384 and AM13/16384, implement both Node Guarding protocol and Heartbeat protocol. Singleturn encoders only implement the Node Guarding protocol.


When available, use the bit 14 **Error Control protocols** in the **6000–00 Operating parameters** object to enable either the Node Guarding protocol or the Heartbeat protocol. For more information refer to page 59.

When **Error Control protocols** = 0, the Node Guarding protocol is enabled.

When **Error Control protocols** = 1, the Heartbeat protocol is enabled.

The Heartbeat protocol defines an Error Control Service without need for remote frames. A Heartbeat Producer transmits a Heartbeat message cyclically. The transmission cycle is set in the 1017–00 Producer Heartbeat time object. One or more Heartbeat Consumers can receive the information. The relationship between producer and consumer is configurable via the Object dictionary. The Heartbeat Consumer guards the reception of the Heartbeat within the 1016–01 Consumer Heartbeat time. If the Heartbeat is not received within the 1016–01 Consumer Heartbeat time a Heartbeat event will be generated. In the same object also the Node-ID, i.e. the address of the node to be monitored, must be set.

r: reserved (always 0)

s: the state of the Heartbeat producer

0: BOOT-UP
4: STOPPED
5: OPERATIONAL

127: PRE-OPERATIONAL

If the 1017-00 Producer Heartbeat time is configured on a device, the Heartbeat protocol begins immediately. If a device starts with a value for the 1017-00 Producer Heartbeat time that is other than 0, the Heartbeat protocol starts on the state transition from INITIALISING to PRE-OPERATIONAL. In this case the Boot-up message is regarded as first heartbeat message. A device is not allowed to use both control mechanisms (Node Guarding protocol and Heartbeat protocol) at the same time. If the 1017-00 Producer Heartbeat time is other than 0, the Heartbeat protocol is used.

76

7 - Setting-up

Here following are some examples of transmission between Master and Slave devices.

A generic "ID" value is used to indicate the encoder address; the Master address is always 0. All values are expressed in hexadecimal notation.

7.1 Setting the Operational, Pre-operational state

NMT message Master → Slave

Operational: COB-ID Cmd Node
000 01 ID

Pre-operational: 000 80 ID

7.2 Setting the resolution per revolution

6001-00 Measuring units per revolution (2¹⁶=0001 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub	Process data			
600+ID	23	01	60	00	00	00	01	00

Encoder → Master (Set confirmation)

		,5	•					
COB-ID	Cmd	Inc	lex	Sub	Process data			
580+ID	60	01	60	00	00	00	00	00

7.3 Setting the total resolution

6002-00 Total measuring range (2²⁸=1000 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	dex	Sub		Process data			
600+ID	23	02	60	00	00	00	00	10	

Fncoder → Master (Set confirmation)

Lineoue: 2	· · · · · · · ·	(5000	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a c. O ,					
COB-ID	Cmd	Inc	lex	Sub		Process data			
580+ID	60	02	60	00	00	00	00	00	

7.4 Setting the Operating parameters

6000-00 Operating parameters

(Code sequence: CW, Scaling function: enabled, Limit switch min. / Limit switch max.: disabled)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub	Process data			
600+ID	2B	00	60	00	04	00	_	-

77

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	Process data			
580+ID	60	00	60	00	00	00	_	-

7.5 Setting the Preset value

6003-00 Preset value (preset = 1000 = 03E8h)

Master → Encoder (Set request)

master y income (see request)											
COB-ID		Cmd	Inc	lex	Sub	Process data					
600+ID		23	03	60	00	E8	03	00	00		

Encoder → Master (Set confirmation)

COB-ID	Cr	nd	Inc	lex	Sub	Process data			
580+ID	6	0	03	60	00	00	00	00	00

7.6 Setting the Sync counter

1801 PDO2 parameters sub 2 (n = 5 = 05h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc		Sub	Process data			
600+ID	2F	01	18	02	05	-	-	-

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	Process data			
580+ID	60	01	18	02	00	_	-	-

7.7 Disabling the Sync mode

1801 PDO2 parameters sub 1

Read COB-ID used by PDO2:

Master → Encoder (Reg request)

COB-ID	Cmd	Inc	lex	Sub				
600+ID	40	01	18	01	-	_	_	-

Encoder → Master (Reg reply)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	43	01	18	01	ВО	B1	B2	В3

COB-ID used by PDO2 = ($(B3<<24) \mid (B2<<16) \mid (B1<<8) \mid B0$) set the most significant bit to 1:

B3 |= 0x80;

Set the new COB-ID used by PDO2 (1801 PDO2 parameters sub 1):

Master → Fncoder (Set request)

Widster 2	_	incoaci	(5001	equest,					
COB-ID		Cmd	Inc	lex	Sub		Proces	s data	
600+ID		23	01	18	01	B0	B1	B2	В3

78

Encoder → Master (Set confirmation)

2110000	· · · · · · · · · · · · · · · · · · ·	(5000	0111111111	4 (1011)				
COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	60	01	18	01	00	00	00	00

7.8 Enabling the Cyclic mode

Set the cyclic time 6200-00 Cyclic time (100 ms = 64h)

Master → Encoder (Set request)

TTTGSCCT 2	_		(500.1	- 4 4 6 5 6					
COB-ID		Cmd	Ind	lex	Sub		Proces	s data	
600+ID		2B	00	62	00	64	00	-	-

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	60	00	62	00	00	00	_	-

Read the COB-ID used by PDO1 (1800 PDO1 parameters, sub 1):

Master → Encoder (Reg request)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
600+ID	40	00	18	01	_	-	-	-

Encoder → Master (Reg reply)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	43	00	18	01	ВО	B1	B2	В3

COB-ID used by PDO1 = ((B3<<24) \mid (B2<<16) \mid (B1<<8) \mid B0) set the most significant bit to 0:

B3 &= 0x7F;

Set the new COB-ID used by PDO1 (1800 PDO1 parameters, sub 1):

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
600+ID	23	00	18	01	ВО	B1	B2	В3

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	
580+ID	60	00	18	01	00	00	00	00

NOTE

To save the new parameters execute the store parameters function (see the 1010–01 Store parameters object).

When the power is turned off or in case of **Reset node** and **Restore node** commands, the parameters not saved are lost.

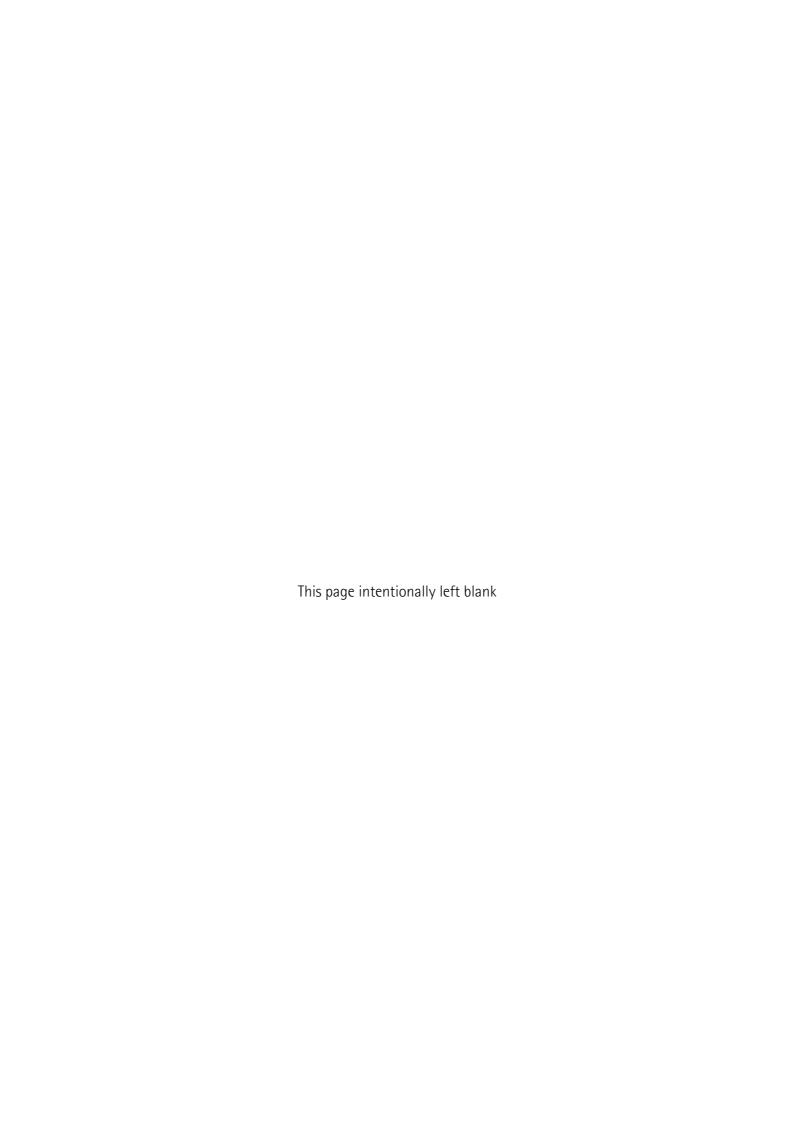
8 - Default parameters list

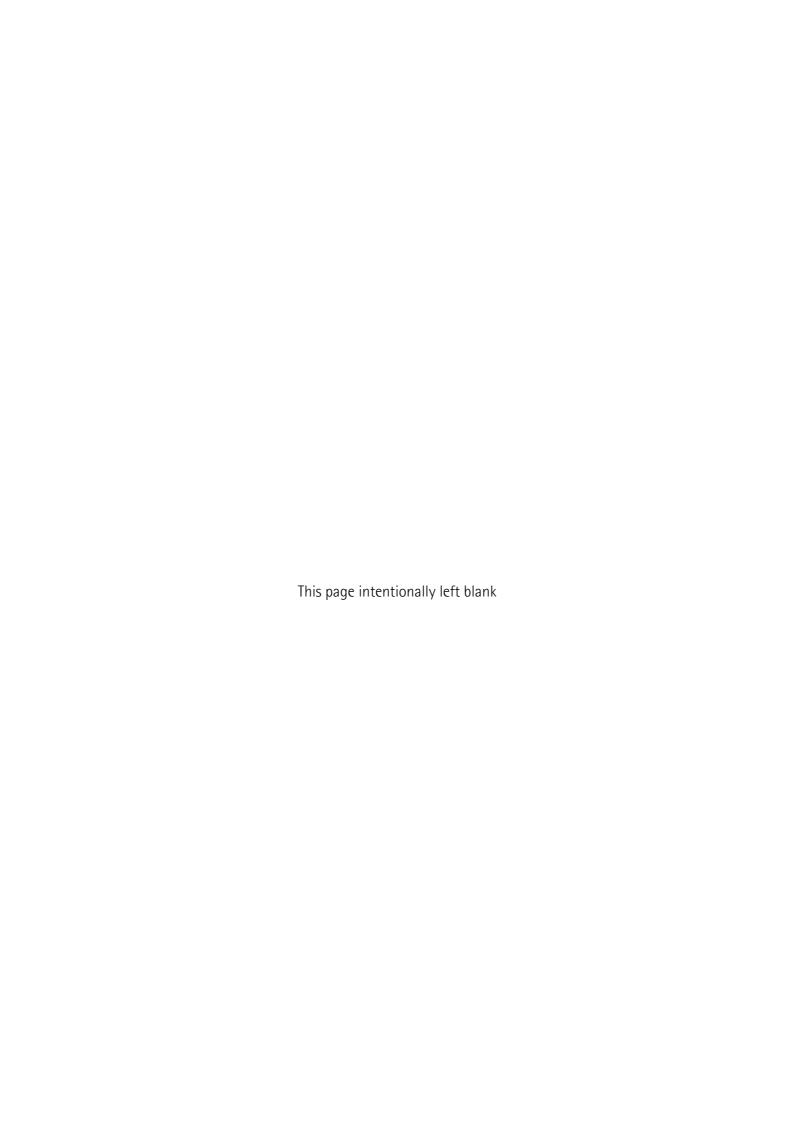
Default values are expressed in hexadecimal notation, unless otherwise indicated.

8.1 Communication Profile Area objects

Parameters list	Default values	
	0001 0196h	
	singleturn encoder	
1000-00 Device type	0002 0196h	
	multiturn encoder	
1001-00 Error register	00h	
1003 Predefined error field	-	
1005-00 COB_ID SYNC message	0000 0080h	
1008-00 Manufacturer device name	Ax58-CB*	
1009-00 Manufacturer hardware	D : 1 1 1	
version	Device dependent	
100A-00 Manufacturer software	Davida a damandant	
version	Device dependent	
100C-00 Guard time	0000h	
100D-00 Life time factor	00h	
1014-00 COB-ID EMCY	0000 0080h+NODEID	
1015-00 Inhibit time EMCY	0000h	
1016-01 Consumer Heartbeat time	0000 0000h	
1017-00 Producer Heartbeat time	0000h	
1018 Identity object		
Vendor number	0000 012Eh	
Product number	0000 0000h	
Revision number	0000 0001h	
1800 PDO1 parameters, sub 1	4000 0400L NODELD	
COB-ID of PDO1	4000 0180h+NODEID	
1800 PDO1 parameters, sub 2	FEh	
Transmission type	FEII	
1801 PDO2 parameters, sub 1	4000 0280h+NODEID	
COB-ID of PDO2	4000 0280H+NODEID	
1801 PDO2 parameters, sub 2	01h	
Transmission type	UIII	
1802 PDO3 parameters, sub 1	C000 0380h+NODEID	
COB-ID of PDO3	COOO OSOON+NODEID	
1802 PDO3 parameters, sub 2	01h	
Transmission type	UIII	
1803 PDO4 parameters, sub 1	C000 0480h+NODEID	
COB-ID of PDO4	COOO O40OIITINODEID	
1803 PDO4 parameters, sub 2	FEh	
Transmission type	I LII	
1A00-01 TPD01 mapping parameter	6004 0020h	
1A01-01 TPDO2 mapping parameter		
1A02-01 TPDO3 mapping parameter		
1A03-01 TPDO4 mapping parameter	3006 0020h	

^{*} Text string




8.2 Manufacturer Specific Profile Area objects

Parameters list	Default values	
2104-00 Limit switch min.	0000 0010h	
2105-00 Limit switch max.	003F FFF0h	
3000-00 Baud rate	05h	
3001-00 Node-ID	01h	
3005-00 Velocity format	00h	

8.3 Standardized Device Profile Area objects

Parameters list	Default values	
6000-00 Operating parameters	0000h	
Code sequence	0 = CW	
Scaling function	0 = disabled	
Limit switch min.	0 = disabled	
Limit switch max.	0 = disabled	
Error Control protocols	0 = Node Guarding	
P1000000	4,096 AMx58x12/	
6001-00 Measuring units per	8,192 Ax58x13/	
revolution	65,536 Ax58x16/	
	262,144 ASx58x18/	
	8,192 ASx58x13/	
	65,536 ASx58x16/	
	262,144 ASx58x18/	
	16,777,216	
6002-00 Total measuring range	AMx58x12/4096	
	134,217,728	
	AMx58x13/16384	
	1,073,741,824	
	AMx58x16/16384	
6003-00 Preset value	0000 0000h	
6200-00 Cyclic time	0000h	
6500-00 Operating status	0000h	
	4,096 AMx58x12/	
2524 22 5: 14	8,192 Ax58x13/	
6501-00 Singleturn resolution	65,536 Ax58x16/	
	262,144 ASx58x18/	
	1 ASx58x	
	4,096	
6502-00 Number of distinguishable	AMx58x12/4096	
revolutions	16,384	
	AMx58x13/16384	
	and AMx58x16/16384	
6504-00 Supported alarms	0000h	
6506-00 Supported warnings	0000h	
6507-00 Profile and software	0201 0101h	
version	0301 0101h	
6508-00 Operating time	FFFF FFFFh	
6509-00 Offset value	0000 0000h	
650A-01 Manufacturer offset value	0000 0000h	
650B-00 Serial number	FFFF FFFFh	

Document release	Release date	Description	HW	SW	EDS file version
1.0	16.01.2009	First issue	LKC 587 R2	1.0, 2.0, 3.0	V3
1.1	14.10.2010	obj_6002 and obj_6003 correction	LKC 587 R2	4.0, 5.0, 6.0	V3
1.2	13.10.2011	Added velocity + section 3 + general review	LKC 587 R3	6.1, 6.2	V3
1.3	07.02.2014	Updated objects 1014.00-1800.01-1801.01- 1802.01-1803.01, added section 8, general review, Italian / English separate edition	LKC 587 R3	6.2	V3
1.4	04.03.2015	Updated information about objects 1800h, 1801h, 1802h, 1803h, 6200h	LKC 587 R3	6.2	V3
1.5	05.11.2015	1008-00 Manufacturer device name and 1A03- 01 TPDO4 mapping parameter objects updated, SDO abort codes and EMCY codes, general and graphic review	LKC 587 R3	7.0, 10.0	V4
1.6	14.06.2017	Heartbeat protocol added, general review	LKC 587 R3	11.0	V5

This device is to be supplied by a Class 2 Circuit or Low-Voltage Limited Energy or Energy Source not exceeding 30 Vdc. Refer to the order code for supply voltage rate.

Ce dispositif doit être alimenté par un circuit de Classe 2 ou à très basse tension ou bien en appliquant une tension maxi de 30Vcc. Voir le code de commande pour la tension d'alimentation.

Lika Electronic

Via S. Lorenzo, 25 • 36010 Carrè (VI) • Italy

Tel. +39 0445 806600 Fax +39 0445 806699

